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Chapter 1

( SETS )

**In these days of conflict between ancient and modern studies; there
must surely be something to be said for a study which did not
begin with Pythagoras and will not end with Einstein; but
is the oldest and the youngest. — G.H. HARDY ¢

1.1 Introduction

The concept of set serves as a fundamental part of the
present day mathematics. Today this concept is being used
in aimost every branch of mathematics. Sets are used to
define the concepts of relations and functions. The study of
geometry, sequences, probability, etc. requirestheknowledge
of sets.

The theory of sets was developed by German
mathematician Georg Cantor (1845-1918). He first
encountered setswhileworking on “ problemson trigonometric
series’. In this Chapter, we discuss some basic definitions
and operationsinvolving sets. 6(61082195332;”

1.2 Setsand their Representations

In everyday life, we often speak of collections of objects of a particular kind, such as,
apack of cards, acrowd of people, acricket team, etc. In mathematics also, we come
across collections, for example, of natural numbers, points, prime numbers, etc. More
specially, we examinethefollowing collections:
() Odd natural numberslessthan 10,i.e., 1,3,5,7,9

(i) Theriversof India

(iii) Thevowelsinthe English alphabet, namely, a, , i, 0, u

(iv) Variouskindsof triangles

(v) Primefactorsof 210, namely, 2,3,5and 7

(vi) The solution of the equation: X*—5x + 6 =0, viz, 2 and 3.

We note that each of the above exampleisawell-defined collection of objectsin
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the sense that we can definitely decide whether a given particular object belongsto a
given collection or not. For example, we can say that the river Nile does not belong to
the collection of riversof India. On the other hand, the river Ganga does belong to this
colleciton.

We give below afew more examples of setsused particularly in mathematics, viz.

N : theset of al natural numbers

Z : theset of dl integers

Q : theset of dl rational numbers

R : the set of real numbers

Z* : the set of positive integers

Q* : theset of positive rational numbers, and

R* : the set of positive real numbers.

The symbols for the special sets given above will be referred to throughout
thistext.

Again the collection of five most renowned mathematicians of the world is not
well-defined, because the criterion for determining a mathematician as most renowned
may vary from person to person. Thus, it is not awell-defined collection.

We shall say that a set is a well-defined collection of objects.

Thefollowing points may be noted :

(i) Objects, elements and members of a set are synonymous terms.
(i) Setsareusualy denoted by capital lettersA, B, C, X, Y, Z, €fc.
(ili) The elements of a set are represented by small letters a, b, ¢, X, y, z, etc.
If aisan element of aset A, we say that “ a belongsto A” the Greek symbol
(epsilon) is used to denote the phrase ‘belongsto’. Thus, wewriteae A. If ‘b’ isnot
an element of aset A, wewriteb ¢ A and read “b does not belong to A”.
Thus, inthe set V of vowelsin the English alphabet, ae V but b ¢ V. In the set
P of prime factors of 30, 3e Pbut15¢ P,
There are two methods of representing a set :

(i) Roster or tabular form
(i) Set-builder form.

(i) Inroster form, all the elementsof aset arelisted, the elements are being separated
by commas and are enclosed within braces{ }.For example, the set of al even
positive integers less than 7 is described in roster form as {2, 4, 6}. Some more
examples of representing a set in roster form are given below :

(@) Thesetof al natural numberswhich divide42is{1, 2,3, 6,7, 14, 21, 42} .
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In roster form, the order in which the elements are listed is immaterial.
Thus, the above set can also be represented as{ 1, 3, 7, 21, 2, 6, 14, 42}.
(b) Theset of al vowelsin the English aphabetis{a, e i, 0, U}.
(c) Theset of odd natural numbersisrepresented by {1, 3,5, .. .}. The dots
tell usthat thelist of odd numbers continueindefinitely.
It may be noted that whilewriting the set in roster form an element is not

generally repeated, i.e., al the elements are taken as distinct. For example, the set
of lettersforming theword ‘SCHOOL" is{ S,C,H, O, L} or{H, O, L, C, S}. Here,
the order of listing el ements has no relevance.

(i) In set-builder form, all the elements of a set possess a single common property

which is not possessed by any element outside the set. For example, in the set

{a, & 1,0, u}, al the elements possess acommon property, namely, each of them

isavowel inthe English a phabet, and no other |etter possessthis property. Denoting

this set by V, we write

V ={x: xisavowel in English aphabet}

It may be observed that we describe the element of the set by using a symbol x
(any other symbol likethelettersy, z, etc. could be used) whichisfollowed by acolon
“ 7. After the sign of colon, we write the characteristic property possessed by the
elements of the set and then enclose the whole description within braces. The above
description of the set V isread as “the set of all x such that x isavowel of the English
alphabet”. In this description the braces stand for “the set of all”, the colon stands for
“such that”. For example, the set

A ={x: xisanatural number and 3<x< 10} isread as“the set of all x such that

xisanatural number and x lies between 3 and 10. Hence, the numbers4, 5, 6, 7,

8 and 9 are the elements of the set A.

If we denote the sets described in (a), (b) and (c) above in roster form by A, B,
C, respectively, then A, B, C can also be represented in set-builder form as follows:

A= {x:xisanatura number which divides 42}

B={y:yisavowe inthe English al phabet}

C={z: zisan odd natural number}

Example 1 Write the solution set of the equation x>+ x —2 = 0 in roster form.

Solution The given equation can be written as
(x-1) (x+2)=0,i.e, x=1,-2
Therefore, the solution set of the given equation can be written in roster formas{1, —2}.

Example 2 Write the set {x : x isa positive integer and x* < 40} in the roster form.
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Solution Therequired numbersare 1, 2, 3, 4, 5, 6. So, the given set in the roster form
is{1,2,3,4,5,6}.

Example 3 Writetheset A={1, 4,9, 16, 25, . .. }in set-builder form.

Solution We may write the set A as

A = {x: x isthe square of anatura number}
Alternatively, we can write

A ={x:x=n%wherene N}

_ 123456 .
Example 4 Writetheset { =, =,—=,=.= } in the set-builder form.

Solution We see that each member in the given set has the numerator one less than
the demominator. Also, the numerator begin from 1 and do not exceed 6. Hence, inthe
set-builder form the given setis

{x: x=il,wherenisanatural number and 1< n< 6}
n+
Example 5 Match each of the set on the left described in the roster form with the
same set on the right described in the set-builder form :

() {PR/I,N,CA,L} (a){x:xisapostiveinteger andisadivisor of 18}

@ {0} (b) { x: xisaninteger and x*—9 = 0}
@) {1,2,3,6,9,18} (o) {x:xisaninteger and x + 1= 1}
(iv) {3,-3} (d) {x: xisaletter of the word PRINCIPAL}

Solution Sincein (d), there are 9 lettersin the word PRINCIPAL and two letters Pand |
are repeated, so (i) matches (d). Similarly, (ii) matches (c) as x + 1 = 1 implies
x=0.Als0, 1,2,3,6,9, 18 aredl divisorsof 18 and o (iii) matches (). Findly, x*—~9=0
impliesx = 3, =3 and so (iv) matches (b).

|EXERCISE 1.1|

1. Which of the following are sets ? Justify your asnwer.
(i) Thecollection of all the months of ayear beginning with the letter J.
(i) Thecollection of ten most talented writers of India
(iii) A team of eleven best-cricket batsmen of the world.
(iv) Thecollection of al boysinyour class.
(v) Thecallection of al natural numbersless than 100.
(vi) A collection of novelswritten by the writer Munshi Prem Chand.
(vii) Thecollection of al even integers.
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(viii) Thecollection of questionsin this Chapter.
(i) A collection of most dangerous animals of the world.
Let A={1, 2, 3, 4,5, 6}. Insert the appropriate symbol € or ¢ in the blank
Spaces:
@i 5..A @i 8...A @iy 0...A
(iv) 4...A (v) 2...A (vi) 10...A
Writethefollowing setsin roster form:
(i) A={x:xisaninteger and -3 <x<7}
(i) B={x:xisanatura number lessthan 6}
(i) C={x:xis atwo-digit natural number such that the sum of itsdigitsis 8}
(iv) D ={x:xisaprimenumber which isdivisor of 60}
(v) E=Thesetof al lettersin the word TRIGONOMETRY
(vi) F=Thesetof dl lettersin theword BETTER
Writethefollowing setsin the set-builder form:
(i) (3,6,9,12} (i) {24816,32} (i) {5, 25,125, 625}
(iv) {2,4,6,..} (v) {14)9,...,100}
List al the elements of the following sets:

(i) A ={x:xisanodd natural number}
1 9

(i) B={x:xisaninteger, ) <x< E}

(i) C={x:xisaninteger, X*< 4}

(iv) D={x:xisaletter intheword “LOYAL"}

(v) E={x:xisamonth of ayear not having 31 days}

(vi) F={x:xisaconsonant in the English alphabet which precedesk}.

Match each of the set on the left in the roster form with the same set on theright

described in set-builder form:

(i) {1,2,3,6} (@ {x:xisaprimenumber and adivisor of 6}

@i {2,3 (b) {x:xisanodd natural number lessthan 10}
@y {MATHEICS} (c) {x:xisnatura number and divisor of 6}

(iv) {1,3,57,9} (d) {x:xisaletter of the word MATHEMATICS}.

1.3 TheEmpty Set
Consider the set

A ={ x:xisastudent of Class XI presently studying in aschool }
We can go to the school and count the number of students presently studying in

Class X1 in the school. Thus, the set A contains afinite number of elements.

We now write another set B as follows:
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B ={ x: xisastudent presently studying in both Classes X and XI }
We observethat astudent cannot study simultaneously in both Classes X and XI1.
Thus, the set B contains no element at all.

Definition 1 A set which does not contain any element is called the empty set or the
null set or the void set.
According to this definition, B is an empty set while A is not an empty set. The
empty set is denoted by the symbol ¢ or { }.
We give below afew examples of empty sets.
(i) LetA={x:1<x<2, xisanatural number}. Then A is the empty set,
because there is no natural number between 1 and 2.
(i) B={x:x*—2=0andxisrationa number}. Then B isthe empty set because
the equation x¥*—2 = 0 is not satisfied by any rational value of x.
(i) C={x:xisaneven primenumber greater than 2} .Then Cisthe empty set,
because 2 is the only even prime number.
(iv) D={x:x*=4,xisodd}. Then D isthe empty set, because the equation
x?= 4 isnot satisfied by any odd value of x.

1.4 Finiteand Infinite Sets

Let A={12234,5}, B={ab,cdeqg}

and C ={ menliving presently in different parts of the world}

We observethat A contains 5 elementsand B contains 6 elements. How many elements
does C contain? Asit is, we do not know the number of elementsin C, but it is some
natural number which may be quite a big number. By number of elements of aset S,
we mean the number of distinct elements of the set and we denoteit by n (S). If n (S)
is anatural number, then S is non-empty finite set.

Consider the set of natural numbers. We see that the number of elements of this
set is not finite since there are infinite number of natural numbers. We say that the set
of natural numbersis an infinite set. The setsA, B and C given above are finite sets
and n(A) =5, n(B) = 6 and n(C) = some finite number.

Definition 2 A set which is empty or consists of a definite number of elementsis
called finite otherwise, the set is called infinite.

Consider some examples:

(i) Let W be the set of the days of the week. Then W is finite.

(i) Let Sbethe set of solutions of the equation x>—16 = 0. Then Sisfinite.

(i) Let G betheset of pointson aline. Then Gisinfinite.

When we represent a set in the roster form, we write all the elements of the set
within braces{ }.Itisnot possibletowriteall the elements of an infinite set within
braces{ } becausethe numbersof elementsof such aset isnot finite. So, we represent
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someinfinite set in theroster form by writing afew elementswhich clearly indicatethe
structure of the set followed ( or preceded ) by three dots.

For example, {1, 2, 3. . .} istheset of natural numbers, {1, 3,5, 7, .. .} istheset
of odd natural numbers, {...—-3,-2,-1,0,1, 2,3, ...} isthe set of integers. All these
setsareinfinite.

| e NotelAll infinite sets cannot be described in the roster form. For example, the

set of real numbers cannot be described in this form, because the e ements of this
set do not follow any particular pattern.

Example 6 State which of the following sets are finite or infinite::
(i) {x:xe Nand(x-1)(x-2) =0}
(i) {x:xe Nandx*=4}
(i) {x:xe Nand2x-1=0}
(iv) {x:xe Nandxisprime}
(v) {x:xe Nandxisodd}
Solution (i) Givenset={1, 2}. Hence, itisfinite.
(i) Givenset={2}.Hence, itisfinite.
(i) Givenseat = ¢. Hence, itisfinite.
(iv) Thegiven setisthe set of all prime numbers and since set of prime
numbersisinfinite. Hencethe given setisinfinite
(v) Sincethereareinfinite number of odd numbers, hence, thegivensetis
infinite.
1.5 Equal Sets

Given two sets A and B, if every element of A is aso an element of B and if every
element of B is aso an element of A, then the sets A and B are said to be equal.
Clearly, the two sets have exactly the same elements.

Definition 3 Two sets A and B are said to be equal if they have exactly the same
elements and we write A = B. Otherwise, the sets are said to be unequal and we write
A = B.
We consider thefollowing examples:
() LetA={1,2, 3,4} and B={3,1,4, 2}. ThenA=B.
(i) LetAbetheset of prime numberslessthan 6 and Pthe set of prime factors
of 30. ThenA and Pareequal, since 2, 3and 5 are the only primefactors of
30 and a'so these are less than 6.

A set does not change if one or more elements of the set are repeated.
For example, the setsA = {1, 2, 3} and B = {2, 2, 1, 3, 3} are equal, since each
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element of A isin B and vice-versa. That is why we generally do not repeat any
element in describing a set.

Example 7 Find the pairs of equal sets, if any, give reasons:
A ={0}, B={x:x>15and x < 5},
C={x:x-5=0}, D ={x: x2= 25},
E ={x: xisanintegra positive root of the equation x* — 2x —15 = 0} .

Solution Since 0 € A and 0 does not belong to any of the sets B, C, D and E, it
followsthat, AB,A«C,A«D,A#E.

Since B = ¢ but none of the other sets are empty. ThereforeB = C, B # D
and B # E. Also C = {5} but -5 € D, hence C # D.

SinceE = {5}, C=E. Further, D ={-5, 5} and E = {5}, wefind that, D #E.
Thus, the only pair of equal setsis C and E.

Example 8 Which of the following pairs of sets are equal ? Justify your answer.
() X, theset of lettersin “ALLOY” and B, the set of lettersin “LOYAL".
@M A={n:ne Zandn*<4} andB ={x:xe Rand x*-3x +2=0}.

Solution (i) We have, X ={A, L,L,0O,Y},B={L,0O,Y,A, L}. Then X and B are

equal sets as repetition of elementsin a set do not change a set. Thus,
X={A,L,0,Y}=B

(i)A={-2,-1,0,1,2}, B={1,2}.Since0e Aand0¢ B, A and B arenot equal sets.

|[EXERCISE 1.2|

1. Which of thefollowing are examples of the null set
(i) Setof odd natural numbersdivisible by 2
(i) Set of even prime numbers
(i) { x:xisanatural numbers, x<5and x> 7}
(iv) {y:y isapoint common to any two parallel lines}
2. Which of thefollowing setsarefinite or infinite
(i) The set of months of a year
@i {1,23,..}
@y {1,2,3,...99, 100}
(iv) Theset of positive integers greater than 100
(v) The set of prime numbers less than 99
3. Statewhether each of thefollowing set isfinite or infinite:
(i) Theset of lineswhich are parallel to the x-axis
(i) Theset of lettersin the English al phabet
(iii) The set of numberswhich are multiple of 5
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(iv) Theset of animalsliving on the earth
(v) Theset of circles passing through the origin (0,0)
4. Inthefollowing, state whether A = B or not:
(i) A={ab,cd} B={dchba}
(i) A={4,812,16} B ={8,4,16,18}
(i) A={2,4,6,8,10 B = { x:xispositive even integer and x < 10}
(iv) A={x:x isamultipleof 10}, B = {10, 15,20, 25, 30, ...}
5. Arethefollowing pair of setsequal ? Give reasons.
(i) A={2,3}, B= {x:xissolutionof x* +5x + 6 = 0}
(i) A ={x:xisaletter in the word FOLLOW}
B ={ y:yisaletter in the word WOLF}
6. From the sets given below, select equal sets:
A={24,812}, B={1,234}, C={481214, D={31472
E={-1, 1}, F={0,a}, G={1,-1}, H={0, 1}

1.6 Subsets
Consider thesets: X = set of al studentsin your school, Y = set of all studentsin your
class.

We notethat every element of Y isalso an element of X; wesay that Y isasubset
of X. Thefact that Y issubset of X isexpressed in symbolsasY < X. The symbol c
stands for ‘isasubset of” or ‘is contained in’.

Definition 4 A set A is said to be a subset of aset B if every element of A isalso an
element of B.

In other words, A c B if whenever ae A, then a e B. It is often convenient to
usethesymbol “=" which meansimplies. Using this symbol, we can writethe definiton
of subset as follows:

AcBifae A=>aeB

We read the above statement as “A is a subset of B if a is an element of A
implies that a is also an element of B”. If A is not a subset of B, we write A ¢ B.

We may note that for A to be a subset of B, all that is needed is that every
element of Aisin B. Itispossible that every element of B may or may not beinA. If
it so happensthat every element of BisalsoinA, thenweshall dsohaveB c A. Inthis
case, A and B are the same sets so that we have Ac B and B ¢ A < A =B, where
“&” isasymbol for two way implications, and isusually read asif and only if (briefly
written as “iff”).

It follows from the above definition that every set A is a subset of itself, i.e.,
A c A. Since the empty set ¢ has no elements, we agree to say that ¢ is a subset of
every set. We now consider some examples :
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(i) Theset Q of rational numbersis a subset of the set R of real numbes, and
we write Q c R.
(i) IfAisthesetof al divisors of 56 and B the set of all prime divisors of 56,
then B isasubset of A and we write B c A.
(i) LetA={1,3,5} andB ={x: xisanodd natural number lessthan 6}. Then
A cBandB c A and hence A = B.
(iv) LeeA={aei,o,ut andB={ a b, c,d}. ThenA isnot a subset of B,
also B is not a subset of A.
LetAand B betwosets. IfAcBandA =B, then A iscalled a proper subset
of B and B is called superset of A. For example,
A ={1, 2,3} isaproper subset of B ={1, 2, 3, 4}.
If a set A has only one element, we call it a singleton set. Thus{ a} isa
singleton set.

Example 9 Consider the sets
0,A={1,3}, B={1,59}, C={135,79}.
Insert the symbol < or ¢ between each of the following pair of sets:

(i) 6...B ()A...B  (i)A...C (iv)B...C

Solution (i) ¢ < B as¢ isasubset of every set.
(i) AzBas3eAand3¢ B
(i) AcCasl,3€ Adsobelongsto C
(iv) B < Caseachelement of B isalso an element of C.

Example 10 LeteA={a, e i,0, ut andB ={ a, b, ¢, d}. IsA asubset of B ? No.
(Why?). IsB asubset of A? No. (Why?)

Example 11 Let A, B and C be three sets. If A € B and B c C, is it true that
A c C?. If not, give an example.

Solution No.LetA={1},B ={{1},2} andC={{1}, 2, 3}. HereAc BasA={1}
andBcC.ButAzCasle Aand1l¢ C.
Note that an element of a set can never be a subset of itself.

1.6.1 Subsets of set of real numbers
As noted in Section 1.6, there are many important subsets of R. We give below the
names of some of these subsets.

The set of natural numbers N ={1,2,3,4,5,...}

The set of integers z={...,-3,-2,-1,0,1,2,3,..}

The set of rational numbers Q ={ x: x = g ,p.qe Zandq=0}
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p
whichisread“ Q isthe set of all numbersx such that x equalsthe quotient — , where

q
p and g are integers and g is not zero”. Members of Q include -5 (which can be
5 5 .1 _ 7 11
expressed as —1) 7 35 (which can be expressed as E) and 3

The set of irrational numbers, denoted by T, is composed of all other real numbers.
Thus T={x: xe Randxe¢ Q} =R —-Q,, i.e, al real numbers that are not

rational. Membersof T include /2 , /5 and &.

Some of the obvious relations among these subsets are:
NcZcQQcR, TcR,NgT.

1.6.2 Intervalsassubsetsof R Leta, be R anda< b. Then the set of real numbers
{y:a<y< b} iscaled an open interval and is denoted by (a, b). All the points
between a and b belong to the openinterval (a, b) but a, b themselves do not belong to
thisinterval.

The interval which contains the end points also is called closed interval and is
denoted by [ @, b]. Thus

[a,b]={x:a<x<h}
We can aso have intervals closed at one end and open at the other, i.e.,

[a b)={x:a<x<b} isanopeninterval fromato b, including a but excluding b.

(a,b]={x:a<x< b} isanopeninterval fromatobincluding b but excluding a.

These notations provide an alternative way of designating the subsets of set of
real numbers. For example, if A=(=3,5) and B =[-7, 9], then A c B. Theset [ 0, )
defines the set of non-negative real numbers, while set ( — <, 0 ) defines the set of
negative real numbers. The set (— oo, o ) describes the set of real numbersin relation
to aline extending from — oo tQ oo,

On real number line, various types of intervals described above as subsetsof R,
areshownintheFig 1.1.

(a,b) [a,b] [a,b) (a,b]

O O @ @ @ O O @

a b a b a b a b
Figl.l

Here, we note that an interval containsinfinitely many points.

For example, theset {x: xe R,-5<x< 7}, written in set-builder form, can be
written in the form of interval as (-5, 7] and the interval [-3, 5) can be written in set-
builder formas{x: -3 < x<5}.
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The number (b — @) is called the length of any of the intervals (a, b), [a, b],
[a, b) or (a, b].

1.7 Power Set

Consider the set {1, 2}. Let us write down all the subsets of the set {1, 2}. We
know that ¢ is asubset of every set. So, ¢ isasubset of {1, 2}. We seethat {1}
and { 2 }are also subsets of {1, 2}. Also, we know that every set is a subset of
itself. So, { 1, 2} isasubset of {1, 2}. Thus, theset { 1, 2} has, in al, four
subsets, viz. 0, { 1},{ 2} and { 1, 2}. The set of all these subsetsis called the
power setof { 1,2}.

Definition 5 The collection of al subsets of aset A is called the power set of A. Itis
denoted by P(A). In P(A), every element is a set.

Thus, asinabove, if A={ 1,2}, then
P(A)={0o{1}.{2}.{12}}
Also, notethat n[ P(A) ] =4=22
In general, if A is a set with n(A) = m, then it can be shown that
n[ P(A)] =2m
1.8 Universal Set

Usually, in a particular context, we have to deal with the elements and subsets of a
basic set which isrelevant to that particular context. For example, while studying the
system of numbers, we areinterested in the set of natural numbersand its subsets such
asthe set of al prime numbers, the set of all even numbers, and so forth. Thisbasic set
is called the “Universal Set”. The universal set is usually denoted by U, and al its
subsets by the letters A, B, C, €tc.

For example, for the set of all integers, the universal set can be the set of rational
numbers or, for that matter, the set R of real numbers. For another example, in human
popul ation studies, the universal set consists of all the peoplein theworld.

|EXERCISE 13|

1.  Make correct statements by filling in the symbols c or & in the blank spaces :
() {2,3,4}...{1,2,3,45} (i){abc}...{brcd}
(i) {x:xisastudent of Class XI of your school}. . .{x: x student of your school}
(iv) {x:xisacircleintheplane} .. .{x: xisacirclein the same plane with
radius 1 unit}

(v) {x:xisatriangleinaplane} ...{x: xisarectanglein the plane}
(vi) {x:xisanequilaterd triangleinaplane} ... {x: xisatriangleinthe sameplane}
(vii) {x:xisanevennatural number} ... {x: xisaninteger}
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2. Examine whether the following statements are true or false:
(i) {ab}z{brca}
(i) {a e} c{x:xisavowe inthe English aphabet}
@ {1,2,3}c{135}
(iv) {a}lc {ab,c}
(v) {a}e{ahbc}
(vi) { x:xisanevennatural number lessthan 6} < { x: xisanatural number
which divides 36}
3. L A={12/{34},5}. Whichof thefollowing statements areincorrect and why?
(i) {34 cA (i) {3,4 €A (i) {{3,4}cA
(ivy 1eA v) 1cA vi) {1,2,5} c A
(i) {1,2,51 €A ii) {1,2,3}c A (ix) 6 A
x) 0c A xi) {0} c A
4. Write down all the subsets of the following sets
() {a} (i) {a b} (i) {1,2,3} (iv) ¢
5. How many elements has P(A), if A = ¢?
6.  Writethefollowing asintervals:
(i) {x:xe R,—4<x<6} (i) {x:xe R,—12<x<-10}
(i) {x:xe R,0<x<T7} (iv) {x:xe R,3<x<4}
7. Writethefollowingintervalsin set-builder form:
(i) =30 (i) [6,12] (i) (6,12] (iv) [-23,5)
8. What universal set(s) would you propose for each of thefollowing :
(i) Theset of right triangles. (i) The set of isosceles triangles.
9. GiventhesetsA={1,3,5},B={2,4,6} and C={0, 2, 4, 6, 8}, which of the
following may be considered as universal set (s) for al thethree setsA, B and C
() {0,1,2,3,4,5,6}
(i) ¢
@iy {01,2,34,5,6,7,89,10}
(iv) {1,23456,7:8}
1.9 Venn Diagrams U

Most of the relationships between sets can be
represented by means of diagramswhich areknown ol
as Venn diagrams. Venn diagrams are named after
the Englishlogician, John Venn (1834-1883). These o5
diagrams consist of rectanglesand closed curves
usually circles. The universal set is represented
usually by arectangle and its subsets by circles.

In Venn diagrams, the elements of the sets

are written in their respective circles (Figs 1.2 and 1.3) Figl.2
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Illustration 1InFig1.2,U={1,23, ..., 10} isthe U
universal set of which
A ={2,4,6,8,10} isasubset. *1

Illustration 2InFig1.3,U={1,2,3, ..., 10} isthe
universal set of which
A={24,68,10} andB ={4, 6} aresubsets, | *°
The reader will see an extensive use of the
Venn diagrams when we discuss the union, intersection and difference of sets.

1.10 Operationson Sets

Inearlier classes, we havelearnt how to perform the operations of addition, subtraction,
multiplication and division on numbers. Each one of these operations was performed
on a pair of numbers to get another number. For example, when we perform the
operation of addition on the pair of numbers 5 and 13, we get the number 18. Again,
performing the operation of multiplication on the pair of numbers5 and 13, we get 65.
Similarly, there are some operations which when performed on two sets give rise to
another set. Wewill now define certain operations on sets and examinetheir properties.
Henceforth, we will refer al our sets as subsets of some universal set.

1.10.1 Union of sets Let A and B be any two sets. The union of A and B is the set
which consists of all theelementsof A and all the elements of B, the common elements
being taken only once. The symbol ‘U’ is used to denote the union. Symbolically, we
write A U B and usually read as ‘A union B’.

Example12 LetA={2,4,6,8 andB ={ 6, 8, 10, 12}. Find A U B.

Solution Wehave AUB ={2,4,6,8, 10, 12}
Note that the common elements 6 and 8 have been taken only once while writing
A U B.

Example 13 LetA={aei,o,u}andB={4ai,u}. Showthaa AuUB =A
Solution Wehave, AUuB={ aei,ou} =A.

This example illustrates that union of sets A and its subset B is the set A
itself, i.e,if Bc A, thenA UB =A.

Example 14 Let X = {Ram, Geeta, Akbar} bethe set of students of Class XI, who are
in school hockey team. Let Y = { Geeta, David, Ashok} be the set of students from
Class X1 who are in the school football team. Find X U Y and interpret the set.

Solution We have, X U'Y = {Ram, Geeta, Akbar, David, Ashok}. Thisis the set of
students from Class X1 who are in the hockey team or the football team or both.
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Thus, we can define the union of two sets as follows:

Definition 6 The union of two sets A and B is the set C which consists of all those
elements which are either in A or in B (including
those which are in both). In symbols, we write. |U
AUB ={x:xeAorxeB}

The union of two sets can be represented by a A
Venn diagram as shown in Fig 1.4.

The shaded portionin Fig 1.4 representsA U B. B
Some Properties of the Operation of Union AUB
() AuB =B UA (Commutative law) Fig 1.4

(i) (AuB)uC=Au(BuUC
(Associative law )

@)y Avo=A (Law of identity element, ¢ istheidentity of L)

(iv), AUA =A (Idempotent law)

(v) UuA =U (Law of U)
1.10.2 Intersection of sets Theintersection of setsA and B isthe set of al elements
which are common to both A and B. The symbol ‘ "' is used to denote the inter section.
The intersection of two setsA and B is the set of all those elements which belong to
both A and B. Symbolically, wewriteAn B ={x: xe Aandx e B}.
Example 15 Consider the setsA and B of Example 12. Find A n B.

Solution We see that 6, 8 are the only elements which are common to both A and B.
Hence AnB={6,8}.

Example 16 Consider the sets X and Y of Example 14. Find X N Y.

Solution We see that element ‘ Geeta' is the only element common to both. Hence,
X MY ={Geeta}.

Examplel7LetA={1,2,3,4,56,7,8,9 10} andB={ 2,3,5,7}. FindA nBand
hence show that A n B = B.

Solution WehaveAnB={2,357} =B. We
note that B — A andthat A n B = B. U

Definition 7 The intersection of two setsA and B
isthe set of all those elementswhich belong to both A
A and B. Symbolically, wewrite
ANnB={x:xe Aandxe B} B
The shaded portion in Fig 1.5 indicates the ANB
interseciton of A and B. Figl5




16 MATHEMATICS

If A and B aretwo setssuchthat A n B = ¢, then U
A and B are caled disjoint sets.

For example, letA={2,4,6,8} and
B={1305 7}. Then A and B are digoint sets,
because there are no e ements which are common to
A and B. The digjoint sets can be represented by
means of Venn diagram as shown in the Fig 1.6

In the above diagram, A and B are digoint sets. Figl6
Some Properties of Operation of Intersection

i) AnB =BnA (Commutativelaw).

i (AnB)nC=ANn(BnNC) (Associative law).

@[y 6nA=0,UnA=A (Law of ¢ and U).

(iv) AnA=A (Idempotent law)

v) An(BuC) = (AnB)U(ANnC) (Digtributivelaw)i. e,

N distributes over U

This can be seen easily from the following Venn diagrams [Figs 1.7 (i) to (v)].

U U

(A G“;

0] (BLC) ([iii) (ANB)

U U

(A G’.

(i) AN(BUC) (iv) (AnC)

(V) (AnB)uU (ANC)
Figs 1.7 (i) to(v)
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1.10.3 Difference of sets The difference of the sets A and B in this order is the set
of elementswhich belong to A but not to B. Symbolically, wewrite A —B and read as
“AminusB”.

Example 18 LetA={1,2,3,4,5,6}, B={2,4,6,8}.FindA—B and B —A.

Solution We have, A—B ={ 1, 3,5}, sincethe elements 1, 3, 5 belong to A but
nottoB and B —A ={ 8}, since the element 8 belongs to B and not to A.
We notethat A —B # B — A.

Example 19 LetV ={ a, ¢ i, 0, u} and
B={aiku.FindV-BandB -V

U
Solution Wehave,V—-B={ g 0}, Sncetheelements
e obelongtoV butnottoB andB -V ={ k}, since

A-B

the element k belongsto B but not to V.

We note that V — B # B — V. Using the set-
builder notation, we can rewrite the definition of
difference as

A-B={x:xe Aandx¢ B}

The difference of two sets A and B can be

represented by Venn diagram as shown in Fig 1.8.
The shaded portion represents the difference of
the two sets A and B.

Remark The setsA — B, An B and B — A are |A-B
mutually digoint sets, i.e., theintersection of any of
these two setsis the null set as shown in Fig 1.9.

Fig18

(ANB)
Fig1.9

|EXERCISE 14|

1. Findthe union of each of thefollowing pairs of sets:
(i) X={1,3,5} Y={123}
(i) A=TJaei,ou B={a b}
(i) A ={x:xisanatura number and multiple of 3}

B = {x: xisanatural number less than 6}
(iv) A={x:xisanatura numberand1<x <6}

B ={x: xisanatural number and 6 <x< 10}
v) A={1,2,3},B=¢
LeteA={ab},B={ab,c.ISAcB?WhaisAUB?
3. If Aand B are two sets such that A c B, then what isA U B ?
4. 1fA={1,2,3,4,B={3,4,5,6},C={5,6,7,8}andD ={ 7,8,9,10}; find

n
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o

10.

11.

12.
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(i) AuB @i AucC (i) BuC (ivyBuD
(v AuBuC vi) AuBuD (vi) BuCubD

Find the intersection of each pair of sets of question 1 above.
IfA={3,57,911},B={7,9, 11,13},C={11, 13,15} and D ={ 15, 17} ; find

() AnB (i) BAC (i) ANCAD
vy AnC V) BAD Vi) An(BUC)
i) AnD i) An(BUD) (X) (AnB)n(BUC)

xX) (AuD)n(BuUCQC)

If A={x:xisanatural number}, B ={x: xisan even natural number}
C ={x:xisan odd natural number}andD = {x : x is a prime number }, find
i) AnB @i AnC @iy AnD

(ivy BnC (vy BnD (vi) CnD

Which of thefollowing pairs of setsare digoint

() {1,2,3,4} and{x:xisanatural numberand4<x<6}

@M {aeiou}tand{cdef}

(i) {x:xisaneveninteger } and {x: xisan odd integer}
IfA={3,6,9 12, 15,18,21},B={ 4,8,12,16,20},
C={24,6,8,10,12,14,16},D ={5, 10, 15,20 }; find

() A-B (i) A-C (i) A-D (iv) B-A
(V) C—A (Vi) D—A i) B—C  (vii) B—D
(ix) C-B x) D-B (x) C-D (xii) D-C
If X={ab,c d}adY={f,b,d, g}, find

() X-Y (i) Y-X (i) XY

If R isthe set of real numbersand Q isthe set of rational numbers, then what is

R-Q?

State whether each of thefollowing statement istrue or fal se. Justify your answer.
() {2,3,4,5} and{ 3,6} aredigoint sets.

(i) {aei,ou}and{ a b, c, d}aredigoint sets.

@) {2,6,10,14} and{ 3,7, 11, 15} aredigoint sets.

(iv) {2,6,10} and{ 3,7, 11} aredisjoint sets.

1.11 Complement of a Set

Let U be the universal set which consists of all prime numbers and A be the subset of
U which consists of all those prime numbers that are not divisors of 42. Thus,

A=

{x:xe Uandxisnotadivisor of 42}. Weseethat 2e U but 2 ¢ A, because

2isdivisor of 42. Smilarly,3e Ubut3¢ A,and7€ Ubut7¢ A.Now 2,3and 7 are
the only elements of U which do not belong toA. The set of these three prime numbers,
i.e,theset{2, 3, 7} iscalled the Complement of A with respect to U, and isdenoted by
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A’. Sowe have A’ ={2, 3, 7}. Thus, we see that
A’ ={x:xe Uandx¢ A}. Thisleadsto the following definition.

Definition 8 Let U be the universal set and A a subset of U. Then the complement of
A isthe set of al elements of U which are not the elements of A. Symbolically, we
write A” to denote the complement of A with respect to U. Thus,
A’={x:xe Uandxe A}.Obviousdy A”=U -A
We note that the complement of aset A can be looked upon, aternatively, asthe
difference between a universal set U and the set A.

Example 20LetU = {1,2,3,4,5,6,7,8,9,10} andA={1, 3,5,7,9}. Find A".

Solution Wenotethat 2, 4, 6, 8, 10 arethe only elements of U which do not belong to
A. Hence A’={24,6,810}.

Example 21 Let U be universal set of all the students of Class X1 of a coeducational
school and A be the set of al girlsin Class X1. Find A”.

Solution Since A isthe set of all girls, A” isclearly the set of al boysin the class.

If A is a subset of the universal set U, then its complement A’ isdso a
subset of U.
Again in Example 20 above, we have A" ={ 2,4,6, 8,10}
Hence (A’Y={x:xe Uandx g A’}
={1,3,57,9} =A
Itisclear fromthedefinition of the complement that for any subset of theuniversal
st U, we have (A") =A

Now, we want to find the results for (A U B )" and A” n B’ in the followng
example.
Example22 LetU={1,2,3,4,5,6},A={2,3} andB ={3, 4, 5}.
FindA’,B", A” nB’,AuBandhenceshow that ( AUB ) =A"nB’".

Solution Clearly A’={1,4,5,6},B'={ 1,2,6}. HenceA’ "B’ ={ 1,6}
AlsoAUB ={2,3,4,5},s0that (AUB) ={1,6}
(AUB)Y ={1,6}=A"NPB

It can be shown that the above result is true in genera. If A and B are any two
subsets of the universal set U, then

(AuB) =A"nB. Smilaly,(AnB) =A" UB’.Thesetwo results are stated
inwordsasfollows:
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The complement of the union of two sets is [y
the intersection of their complements and the A
complement of the intersection of two sets is the
union of their complements. These are called De
Morgan’s laws. These are named after the
mathematician De Morgan.
The complement A” of a set A can be represented

by aVenn diagram as shown in Fig 1.10. Fig1.10
The shaded portion represents the complement of the set A.

Some Properties of Complement Sets
1. Complement laws: HhAUA” =U (iYANA"=¢

2. De Morgan’'s law: A uUB)Y =A"nB (i) (AnB) =A’UB

3. Law of double complementation: (A”)" =A

4. Laws of empty set and universal set ¢’ = U and U’ = ¢.
These laws can be verified by using Venn diagrams.

|EXERCISE 15|

1. LetU={1,234,56,7,89},A={12234},B={2 468} ad
C={3,4,56}.Find(i)A’ (i) B’ (iii) (AU C) (iv) (A UB) (v) (A

(vi) (B -C)

2. IfUu={ab,cd,e°fag,h}, findthe complements of the following sets:
HA={a b, c} (ihB={d, ef, g}
@iy C={a,c,e g} (ivyD={f, g, h a}

3. Takingtheset of natural numbersastheuniversal set, write down the complements

of thefollowing sets:

(i) {x:xisaneven natural number} (i) { x: xisanodd natural number }

(i) {x:xisapositive multipleof 3} (iv) { x: xisaprime number }

(v) {x:xisanatural number divisible by 3 and 5}

(vi) { x:xisaperfect square} (vii) { x: xisaperfect cube}

(viii) { x: x+5=8} (ixX){ x:2x+5=9}

xX) {x:x=>7} (xi){ x:xe Nand2x+1>10}
4. 1fU={1,234,56,7,89},A={2,4,6,8} andB ={ 2, 3,5, 7}. Verify that

(Y(AuB)Y =A"NnB’ (i) AnB)Y=A"UB’
5. Draw appropriate Venn diagram for each of the following :

(i) (A uBY, (iYA"'nB’,  (ii)(AnB), (vyA"uUB

6. Let U betheset of al trianglesin aplane. If A isthe set of all triangles with at

least one angle different from 60°, what isA’?
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7. Fill inthe blanks to make each of the following atrue statement :
i) AUA'=... (i) ONA=...
@[y AnA'=... (iv) UnA=...

1.12 Practical Problems on Union and
| nter section of Two Sets

U
Inearlier Section, we havelearnt union, intersection
and difference of two sets. In this Section, we will Q
go through some practical problems related to our

daily life.The formulae derived in this Section will
also be used in subsequent Chapter on Probability (ANB)
(Chapter 16). Fig1.11
Let A and B befinite sets. If A n B = ¢, then
n(AuB)=n(A)+n(B) . (1)
TheelementsinA U B areeither inA or in B but not in bothasA N B = ¢. So, (1)
followsimmediately.
In generdl, if A and B are finite sets, then
(in(AuB)=n(A)+n(B)-n(ANnB) - (2

Note that the setsA —B, A n B and B —A are digoint and their unionisA UB
(Fig 1.11). Therefore
n(AuB)=n(A-B)+n(A nB)+n(B-A)
=n(A-B)+ n(A nB)+n(B-A)+n(A nB)—-n(A nB)
=n(A)+n(B)-n(A n B), which verifies (2)
(iii) If A, B and C are finite sets, then
n(AuBuC)=n(A)+n(B)+n(C)-n(A nB)-n(B nC)
-n(ANnC)+n(AnBnC) - (3)

In fact, we have
n(AuBuUC)=n(A)+n(BuC)-n[A n(BuC)] [by (2]
=nA)+n(B)+n(C)-n(B nC)-n[ANn(BuUC)] [by (2]

SinceA n(BuC)=(AnB)u(A nC), weget
Nnf[AN(BuC)]l=n(AnB)+n(ANnC)-n[(AnB)n(A nQ)]
=n(AnB)+tn(AnNnC)-n(AnB nCQC)

Therefore
n(AuBuUC) =n(A)+n(B)+n(C)-n(A nB)-n(B nQC)

-n(A nC)+n(A nB nC)
This proves (3).

Example 23 If X and Y are two sets such that X U Y has 50 elements, X has
28 elementsand Y has 32 elements, how many elements does X n'Y have ?
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Solution Given that

N(XuY)=50,n(X)=28 n(Y)=32
nXnyY)="?
By using theformula Q
N(XuY)=n(X)+n(Y)-n(XnNY),
we find that (XAY)
N(XNY)=n(X)+n(Y)=-n(XuUY)
=28+32-50=10 Fig1.12
Alternatively, supposen ( X Y ) =k, then
n(X-Y)=28-k,n(Y—-X)=32-k (by Venndiagramin Fig 1.12)
Thisgives5S0=n(XuY)=n(X-=-Y)+n(X nY)+n(Y-=X)
=(28-k)+k+(32-k)
Hence k =10.
Example 24 In aschool there are 20 teachers who teach mathematics or physics. Of

these, 12 teach mathematics and 4 teach both physics and mathematics. How many
teach physics ?

Solution Let M denote the set of teachers who teach mathematics and P denote the
set of teachers who teach physics. In the statement of the problem, theword *or’ gives
us a clue of union and the word ‘and’ gives us a clue of intersection. We, therefore,
have
n(MuP)=20,n(M)=12andn(M nP)=4
We wish to determine n ( P).
Using the result
n(MuUP)=n(M)+n(P)-n (MnNP),
we obtain
20=12+n(P)-4
Thus n(P)=12
Hence 12 teachers teach physics.

Example 25 In a class of 35 students, 24 like to play cricket and 16 like to play
football. Also, each student likes to play at least one of the two games. How many
studentslike to play both cricket and football ?

Solution Let X be the set of students who like to play cricket and Y be the set of

students who like to play football. Then X U'Y isthe set of studentswho liketo play

at least onegame, and X N'Y isthe set of students who like to play both games.

Given N(X)=24,n(Y)=16,n(XuY)=35nXnNnY)=?

Using theformulan (X uY )=n(X)+n(Y)—-n (XNY), weget
3H5=24+16-n(XNY)
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Thus, n(X NnY)=5
i.e, 5 studentslike to play both games.

Example 26 In asurvey of 400 students in a school, 100 were listed as taking apple
juice, 150 as taking orange juice and 75 were listed as taking both apple as well as
orangejuice. Find how many studentsweretaking neither applejuice nor orangejuice.

Solution Let U denote the set of surveyed students and A denote the set of students
taking apple juice and B denote the set of students taking orangejuice. Then

n (U) =400, n (A) =100, n (B) =150 and n (A N B) = 75.
Now n(A"nB)=n(AuB)
=nU)-n(A uB)
=nU)-n(A)—-n(B) +n(A N B)
=400—-100—150 + 75 =225
Hence 225 students were taking neither apple juice nor orange juice.

Example 27 There are 200 individuals with a skin disorder, 120 had been exposed to
the chemical C, 50 to chemical C,, and 30 to both the chemicals C, and C,. Find the
number of individual sexposed to

(i) Chemica C, but not chemical C, (i) Chemical C, but not chemical C,
(iii) Chemica C, or chemica C,

Solution Let U denote the universal set consisting of individuals suffering from the
skin disorder, A denote the set of individuals exposed to the chemical C, and B denote
the set of individuals exposed to the chemical C..

Here n(U)=200,n(A)=120,n(B)=50andn(AnB)=30

(i) From the Venn diagram given in Fig 1.13, we have
A=(A-B)uU(AnB).
n(A)=n(A-B)+n(AnB) (SinceA-B)andA n B aredigoint.)
on(A-B)=n(A)-n(AnB)=120-30=90

Hence, the number of individuals exposed to U
chemical C, but not to chemical C, is 90.

(if) Fromthe Fig 1.13, we have
B=(B-A)uU(ANB).
andso, n(B)=nB-A)+n(AnB)
(SinceB —A and A "B aredigoint.) (ANB)
o n(B-A)=n(B)-n(AnB) _
=50-30= 20 FigL13
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Thus, the number of individuals exposed to chemical C, and not to chemical C, is 20.
(iii)  The number of individuals exposed either to chemical C, or to chemical C,, i.e,
n(AuB)=n(A)+n(B)-n(AnB)
=120 + 50 — 30 = 140.

|EXERCISE 16|

1. IfXandY aretwosetssuchthatn(X)=17,n(Y)=23andn(X uY ) =38,
findn(XnNY).

2. If XandY aretwo sets such that X U Y has 18 elements, X has 8 elements and
Y has 15 elements ; how many elements does X n'Y have?

3. Inagroup of 400 people, 250 can speak Hindi and 200 can speak English. How
many people can speak both Hindi and English?

4. If Sand T aretwo sets such that S has 21 elements, T has 32 elements,and SN T
has 11 elements, how many elements does Su T have?

5. If XandY aretwo sets such that X has 40 elements, X U Y has 60 elements and
X MY has 10 elements, how many elements does Y have?

6. Inagroup of 70 people, 37 like coffee, 52 like tea and each person likes at least
one of the two drinks. How many people like both coffee and tea?

7. Inagroup of 65 people, 40 likecricket, 10 like both cricket and tennis. How many
like tennis only and not cricket? How many like tennis?

8.  In acommittee, 50 people speak French, 20 speak Spanish and 10 speak both
Spanish and French. How many speak at least one of these two languages?

Miscellaneous Examples

Example 28 Show that the set of letters needed to spell * CATARACT ” and the
set of letters needed to spell “ TRACT” are equal.

Solution Let X be the set of lettersin “CATARACT”. Then
X={CA, TR}
LetY bethe set of lettersin“ TRACT”. Then
Y={T,RACT}={T,RA,C}
Sinceevery elementin X isinY and every elementinY isin X. It followsthat X =Y.

Example 29 List al the subsets of theset { -1, 0, 1}.

Solution Let A={-1,0,1}. The subset of A having no element is the empty
set ¢. The subsets of A havingoneelementare{ -1},{ 0}, { 1}. The subsets of
A having two elements are {1, O}, {-1, 1} ,{0, 1}. The subset of A having three
elementsof A isAitself. So, all thesubsetsof A are ¢, {1}, {0}, {1}, {-1, O}, {-1, 1},
{0,1} and {-1, O, 1}.
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Example 30 Show that Au B= An B implies A=B

Solution Letae A. Thenae AuB.SnceAuB=A N"nB,ae A nB.Soae B.
Therefore, Ac B. Similarly, if be B,thenbe AU B. Since
AuUuB=ANnB,be AnB.So,be A.Therefore, Bc A. Thus, A=B

Example 31 For any setsA and B, show that
P(ANB)=P(A)nP( B).

SolutionLet X e P(ANB). ThenX ¢ AnB. So, X ¢ Aand X c B. Therefore,
XeP(A)andX e P(B)whichimpliesX € P(A)nP(B). ThisgivesP(ANB)
cP(A)nP(B).LeeYe P(A)nP(B). ThenY e P(A)andY € P(B). So,
Y c AandY c B.Therefore,Y ¢ A n B, whichimpliesY € P(A nB). Thisgives
P(A)nP(B)cP(ANB)

HenceP(ANB)=P(A)nP(B).

Example 32 A market research group conducted a survey of 1000 consumers and
reported that 720 consumerslike product A and 450 consumerslike product B, what is
the least number that must have liked both products?

Solution Let U be the set of consumers questioned, S be the set of consumers who
liked the product A and T be the set of consumers who like the product B. Given that
n(U)=1000,n(S)=720,n( T) =450
So N(SuT)=n(S)+n(T)-n(SNT)
=720+450-n(SNT)=1170-n(SNT)

Therefore, N (Su T ) ismaximumwhenn (SN T)isleast. But SuU T < U implies
Nn(SuT) <n(U)=1000. So, maximum valuesof n (Su T) is1000. Thus, the least
valueof n (SN T)is170. Hence, theleast number of consumerswho liked both products
is170.

Example 33 Out of 500 car owners investigated, 400 owned car A and 200 owned
car B, 50 owned both A and B cars. |Is this data correct?

Solution Let U be the set of car owners investigated, M be the set of persons who
owned car A and S be the set of persons who owned car B.

Giventhat n(U) =500,n(M)=400,n(S)=200andn (S~ M) =50.
Then n(SuM)=n(S)+n(M)-n(SnM) =200+ 400-50=550
BuuSUM < Uimpliesn(SuM)<n(U).

Thisisacontradiction. So, the given dataisincorrect.

Example 34 A collegewarded 38 medalsinfootball, 15 in basketball and 20in cricket.
If these medalswent to atotal of 58 men and only three men got medalsin al thethree
sports, how many received medals in exactly two of the three sports ?
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Solution Let F, B and C denote the set of menwho [;

received medals in football, basketball and cricket,

respectively.

Thenn(F)=38,n(B)=15n(C)=20 p@a
n(FuBuC)=58andn(FNBnC)=3

Therefore, n(FuBuUC)=n(F)+n(B) C

+n(C)-n(FNB)-n(FNC)-n(BnC)+

MATHEMATICS

n(FABnN C), Fig1.14
givesn(FNnB)+n(FnC)+n(BnC)=18

Consider the Venn diagram asgivenin Fig 1.14

Here, a denotes the number of men who got medalsin football and basketball only, b
denotes the number of men who got medalsin football and cricket only, ¢ denotes the
number of men who got medals in basket ball and cricket only and d denotes the
number of men who got medal in al thethree. Thus,d=n(FnBnC)=3anda+
d+b+d+c+d=18

Therefore at+b+c=9,

which is the number of people who got medalsin exactly two of the three sports.

o

Miscellaneous Exercise on Chapter 1

Decide, among the following sets, which sets are subsets of one and another:
A={x:xe R andxsatisfy * -8x+12= 0},

B={246}, C={246,8...},D={6}.

In each of thefollowing, determine whether the statement istrueor false. If itis
true, proveit. If it isfalse, give an example.

(i) Ifxe AandAe B,thenxe B
(i) IfA cBandBe C,thenAe C
(i) fAcBandBcC,thenAcC
(ivy IfAgBandBz C,thenAzC
(v) Ifxe AandA B ,thenxe B
(vi) IfAcBandxe B,thenxe A

LetA, B, and C bethesetssuchthat AU B =AU CandA B =An C. Show
that B = C.

Show that the following four conditions are equivalent :
(YAcB(ii)A—B=¢ (iiilAuB=B (ivVAnB=A

Show that if Ac B,thenC—-B c C-A.

Assumethat P(A)=P(B). Showthat A =B

Isit truethat for any setsA and B, P(A) UP(B) =P (A v B)?Justify your
answer.
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8.  Show that for any setsA and B,

A=(An B) U(A-B)andAU(B-A)= (AUB)
9. Using properties of sets, show that

MHAU(ANB)=A (i) An(AuB)=A.

10.  Showthat An B =An Cneednotimply B=C.

11. LetAandBbeses IfA nX=BnX=¢pandA u X =B u X for some set
X, show that A = B.

(Hints A=An(AuX),B=Bn(BuX)and use Distributive law )

12. FindsetsA, B and CsuchthatA nB, B n CandA n C are nhon-empty
setsandA N B N C=¢.

13.  Inasurvey of 600 studentsin aschool, 150 studentswere found to be taking tea
and 225 taking coffee, 100 were taking both tea and coffee. Find how many
students were taking neither tea nor coffee?

14.  Inagroup of students, 100 students know Hindi, 50 know English and 25 know
both. Each of the students knows either Hindi or English. How many students
are there in the group?

15.  Inasurvey of 60 people, it wasfound that 25 people read newspaper H, 26 read
newspaper T, 26 read newspaper |, 9 read both H and |, 11 read both H and T,
8read both T and I, 3 read all three newspapers. Find:

(i) the number of people who read at least one of the newspapers.
(ii) the number of people who read exactly one newspaper.

16. Inasurvey it wasfound that 21 people liked product A, 26 liked product B and
291iked product C. If 14 peopleliked productsA and B, 12 peopleliked products
Cand A, 14 peopleliked products B and C and 8 liked all the three products.
Find how many liked product C only.

Summary

Thischapter dealswith some basi ¢ definitionsand operationsinvolving sets. These

are summarised below:

¢ A setisawell-defined collection of objects.

# A set which does not contain any element is called empty set.

@ A set which consists of a definite number of elements is called finite set,
otherwise, the set is called infinite set.

¢ Two setsA and B are said to be equal if they have exactly the same elements.

¢ A setAissaidto be subset of aset B, if every element of A isalso an element
of B. Intervals are subsets of R.

@ A power set of aset A is collection of all subsets of A. It is denoted by P(A).
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© Theunion of two setsA and B isthe set of all those e ements which are either
inA orinB.

# The intersection of two sets A and B is the set of all elements which are
common. Thedifference of two setsA and B in thisorder isthe set of elements
which belong to A but not to B.

4 The complement of asubset A of universal set U isthe set of al elementsof U
which are not the elements of A.

¢ Forany twosetsAandB, AuB)Y =A"nB’and(AnB)Y =A"UB’

¢ If A and B are finite sets such that A n B = ¢, then
n(A uB)=n(A)+n(B).

IfA N B# ¢, then
n(AuB)=n(A)+n(B)-n(AnB)

Historical Note

The modern theory of setsis considered to have been originated largely by the
German mathematician Georg Cantor (1845-1918A.D.). His paperson set theory
appeared sometimes during 1874 A.D. to 1897 A.D. His study of set theory
came when he was studying trigonometric series of theform a, sinx + a, sin 2x
+a,sin 3x + ... He published in apaper in 1874 A.D. that the set of real numbers
could not be put into one-to-one correspondence wih the integers. From 1879
onwards, he publishd several papers showing various properties of abstract sets.

Cantor’swork waswell received by another famous mathematician Richard
Dedekind (1831-1916 A.D.). But Kronecker (1810-1893 A.D.) castigated him
for regarding infinite set the same way as finite sets. Another German
mathematician Gottlob Frege, at the turn of the century, presented the set theory
asprinciplesof logic. Till then the entire set theory was based on the assumption
of the existence of the set of al sets. It was the famous Englih Philosopher
Bertand Russell (1872-1970A.D.) who showedin 1902 A.D. that the assumption
of existence of a set of al sets leads to a contradiction. This led to the famous
Russell’s Paradox. Paul R.Halmoswritesabout it in hisbook ‘ Naive Set Theory’
that “ nothing contains everything”.

The Russell’s Paradox was not the only one which arose in set theory.
Many paradoxes were produced later by several mathematicians and logicians.
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As a consequence of all these paradoxes, the first axiomatisation of set theory
was published in 1908 A.D. by Ernst Zermelo. Another one was proposed by
Abraham Fraenkel in 1922 A.D. John Von Neumann in 1925 A.D. introduced
explicitly the axiom of regularity. Later in 1937 A.D. Paul Bernays gave a set of
more satisfactory axiomatisation. A modification of these axioms was done by
Kurt Godel in his monograph in 1940 A.D. This was known as VVon Neumann-
Bernays (VNB) or Godel-Bernays (GB) set theory.

Despite al these difficulties, Cantor’s set theory is used in present day
mathematics. In fact, these days most of the concepts and resultsin mathematics
are expressed in the set theoretic language.

—_—
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Chapter 2

(RELATIONSAND FUNCTIONS)

«*Mathematics is the indispensable instrument of
all physical research. - BERTHELOT <¢

2.1 Introduction

Much of mathematics is about finding a pattern — a

recognisable link between quantities that change. In our

daily life, we come across many patternsthat characterise

relations such as brother and sister, father and son, teacher

and student. In mathematics also, we come across many

relations such as number mislessthan number n, linel is

paralel tolinem, set A isasubset of set B. Inall these, we

notice that a relation involves pairs of objects in certain

order. In this Chapter, we will learn how to link pairs of

objectsfrom two setsand then introduce rel ations between

the two objects in the pair. Finally, we will learn about G.W. Leibnitz
special relations which will qualify to be functions. The (1646-1716)
concept of function is very important in mathematics since it captures the idea of a
mathematically precise correspondence between one quantity with the other.

2.2 Cartesian Productsof Sets

Suppose A isaset of 2 coloursand B isaset of 3 objects, i.e.,
A ={red, bluetand B ={b, c, s},

where b, ¢ and s represent a particular bag, coat and shirt, respectively.

How many pairs of coloured objects can be made from these two sets? s

Proceeding in a very orderly manner, we can see that there will be 6

distinct pairsas given below: ¢
(red, b), (red, ©), (red, s), (blue, b), (blue, c), (blue, S). b

Thus, we get 6 distinct objects (Fig 2.1). ré’d b'l'ue

Let us recall from our earlier classes that an ordered pair of elements Fig2.1
taken from any two sets P and Q isa pair of elementswritten in small
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brackets and grouped together in aparticular order, i.e., (p,q), p€ Pand ge Q. This
leadsto thefollowing definition:

Definition 1 Given two non-empty sets P and Q. The cartesian product P X Q isthe

set of al ordered pairs of elementsfromPand Q, i.e.,
PxQ={(pa):pePqgeQ}

If either P or Q isthe null set, then P x Q will also be empty set,i.e, PXQ=1¢

From theillustration given above we note that

A X B ={(red,b), (red,c), (red,s), (blue,b), (blue,c), (blue,s)}.

Again, consider the two sets:

A ={DL, MP, KA}, where DL, MP, KA represent Delhi,

Madhya Pradesh and Karnataka, respectively and B = {01,02, 93
03} representing codes for the licence plates of vehiclesissued 02
by DL, MP and KA . 01

If the three states, Delhi, Madhya Pradesh and Karnataka ) )
were making codes for the licence plates of vehicles, withthe DL MP KA
restriction that the code begins with an element from set A,
which are the pairs available from these sets and how many such
pairswill therebe (Fig2.2)?

The available pairs are:(DL,01), (DL,02), (DL,03), (MP,01), (MP,02), (MP,03),
(KA,01), (KA,02), (KA,03) and the product of set A and set B is given by
A x B ={(DL,01), (DL,02), (DL,03), (MP,01), (MP02), (MP03), (KA,01), (KA,02),

(KA,03)}.

It can easily be seen that therewill be 9 such pairsin the Cartesian product, since
there are 3 elements in each of the sets A and B. This gives us 9 possible codes. Also
note that the order in which these elementsare paired is crucial . For example, the code
(DL, 01) will not be the same as the code (01, DL).

Asafinal illustration, consider the two setsA={a,, a,} and b,

B={b, b, b, b} (Fig23). b,
AxB ={(a,b) (a, b). (. b). (a, b). (&, b). (a, b)) b,
(&, by). (&, by} b,

The 8 ordered pairs thus formed can represent the position of pointsin
the plane if A and B are subsets of the set of real numbers and itis  a, a,
obviousthat the point inthe position (a,, b,) will bedistinct from the point Fig2.3

in the position (b,, a,).

Fig2.2

Remarks
(i) Twoorderedpairsareegual, if andonly if the corresponding first elements
are equal and the second elements are also equal.
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(i) If there are p elements in A and g elements in B, then there will be pq
elementsin A X B, i.e, if n(A) =pand n(B) =g, then n(A X B) = pg.

(i) 1f A'and B are non-empty setsand either A or B isaninfinite set, then sois
A X B.

(iv) AxAxA={(a,b,c):a b,ce A}. Here(a, b, c)iscaled an ordered
triplet.

Example11f (x+1,y—2)=(3,1), find the values of x and y.

Solution Since the ordered pairs are equal, the corresponding elements are equal.
Therefore x+1=3 andy-2=1
Solvingweget x=2andy=3.

Example2 1f P={a, b, c} and Q ={r}, foomthe setsPx Q and Q X P
Are these two products equal ?

Solution By the definition of the cartesian product,
PxQ= {(ar), (br) (c,n}andQxP= {(r a),(r,b),(r,c)}
Since, by the definition of equality of ordered pairs, thepair (a, r) isnot equal to the pair
(r, @), weconcludethat Px Q= Q x P.
However, the number of elementsin each set will be the same.

Example3LetA={1,23},B={34} andC={4,56}. Find
(i) Ax(BNnC) i) AxB)n(AxC)

@[y AxBuCQC) (iv) (AxB)U(AxC)
Solution (i) By the definition of the intersection of two sets, (B m C) ={4}.
Therefore, A x (B N C) ={(1,4), (2,4), (3,4)}.
(i)  Now (A xB)={(1,3),(1,4), (2,3), (2,4), (3,3), (3,4)}

and (AxC)={(1,4),(15),(1,6),(24),(25),(26), (3,4, (35), (3,6)}

Therefore, (AXB)N(AXC) ={(1,4), (2, 4), (3, 4)}.

(iii)Since, (BuC)={3,4,5, 6}, wehave
Ax (BUC)={(13), (L4), (15), (1), (2.3), (24), (25), (26), (33),
(34),(35), (36)}.

(iv) Using the sets A x B and A x C from part (ii) above, we obtain
(AXB)U(AXC)={(1,3),(14),(15),(1,6), (2,3),(24), (2,5), (2,6),
(33),(34),(35),(3,6)}.
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Example41f P={1, 2}, formtheset PXx PX P.

Solution Wehave, PxPx P= {(1,1,1), (1,1,2), (1,2,2),(1,2,2), (2,1,1), (2,1,2), (2,2,2),
(2,2,2)}.
Example 5 If R isthe set of all real numbers, what do the cartesian products R x R

and R X R X R represent?
Solution The Cartesian product R X R representsthe set R x R={(X, y) : X, y € R}
which represents the coordinates of all the points in two dimensional space and the

cartisian product R X R X R representsthesst RX R X R ={(X,y,2) : X, ¥, ze R}
which represents the coordinates of all the points in three-dimensional space.

Example 6 If AX B ={(p, 9),(p, r), (m, q), (m, r)}, find A and B.

Solution A = set of first elements = {p, m}
B = set of second elements={q, r}.

| EXERCISE 2.1

305332 et
1. 1f 3 Y73 3,3,f|ndtevalue£o xandy.

2. If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of

elementsin (AXB).

IfG={7,8 andH={5,4,2},findGxHandH X G

4. State whether each of the following statements are true or false. If the statement
isfalse, rewrite the given statement correctly.
@) 1fP={m,n} and Q={ n, m}, then Px Q= {(m, n),(n, m)}.
(i) 1f A and B are non-empty sets, then A X B is anon-empty set of ordered

pairs (X, y) suchthat xe Aandy € B.

@y 1fA={1,2},B={3 4}, thenAX (BN ¢) =¢.

5 IfA={-1,1},findAxAXA.

IfAXB={(a x),@,Yy), (b, x), (b,y)}. Find A and B.

7. LetA={1,2},B={1,2,3,4},C={5,6} andD ={5, 6, 7, 8}. Verify that
(YAX(BNC)=(AXB)n(AXC).(ii)Ax Cisasubset of B xD.

8. LetA={1,2} andB ={3,4}. WriteA X B. How many subsetswill A X B have?
List them.

9. Let A and B betwo sets such that n(A) =3 and n(B) = 2. If (x, 1), (v, 2), (z, 1)
arein A X B, find A and B, wherex, y and z are distinct elements.

w

o
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10. The Cartesian product A x A has 9 elements among which are found (-1, 0) and
(0,1). Find the set A and the remaining elements of A X A.

2.3 Relations
Consider thetwo setsP={a, b, c} and Q = { Ali, Bhanu, Binoy, Chandra, Divya}.
The cartesian product of P Q
P and Q has 15 ordered pairs which
can belisted asPx Q = {(a, Ali),
(a,Bhanu), (a, Binoy), ..., (c, Divya)}.
We can now obtain a subset of
P x Q by introducing a relation R
between the first element x and the
second element y of each ordered pair
(x,y) as
R={ (x,y): x isthefirst |etter of thenamey, xe P,y e Q}.
Then R ={(a, Ali), (b, Bhanu), (b, Binoy), (c, Chandra)}
A visual representation of this relation R (called an arrow diagram) is shown
inFig2.4.

o Ali
eBhanu

eBinoy
eChandra
eDivya

Definition 2 A relation R from a non-empty set A to a non-empty set B is a subset of
the cartesian product A X B. The subset isderived by describing arelationship between
the first element and the second element of the ordered pairsin A x B. The second
element is called the image of thefirst element.

Definition 3 The set of all first elements of the ordered pairsin arelation R from a set
A to aset B is called the domain of the relation R.

Definition 4 The set of all second elementsin arelation R fromasetAtoaset B is
caled the range of the relation R. The whole set B is called the codomain of the
relation R. Note that range < codomain.

Remarks (i) A relation may be represented algebraically either by the Roster
method or by the Set-builder method.
(i) Anarrow diagram isavisual representation of arelation.

Example7LetA= {1, 2, 3,4,5, 6}. Definearelation R fromA to A by

R={(xy):y= x+1}
(i) Depict thisrelation using an arrow diagram.
(i) Write down the domain, codomain and range of R.

Solution (i) By thedefinition of therelation,
R={(12),(2,3),(3,4), (4,5), (5,6)}.
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The corresponding arrow diagramis
showninFig 2.5.

(if) We can see that the
domain={1,2,34,5}

Similarly, therange = {2, 3, 4, 5, 6}
and thecodomain={1, 2, 3,4, 5, 6}.

Example 8 The Fig 2.6 shows a relation
between the sets Pand Q. Write thisrelation (i) in set-builder form, (ii) in roster form.
What isitsdomain and range? P Q

Fig2.5

Solution Itisobviousthat therelation Ris
“X isthe square of y”.
(i) In set-builder form, R={(x, y): x
isthesquareof y, x e P,y e Q}
(i) Inroster form, R={(9, 3),
(9,-3), (4, 2), (4,-2), (25, 5), (25, -5)} Fig2.6

Thedomain of thisrelationis{4, 9, 25}.

Therange of thisrelationis{-2, 2, -3, 3, -5, 5}.

Note that the element 1 is not related to any element in set P.

The set Q isthe codomain of thisrelation.

|@— Note [Thetotal number of relations that can be defined from aset A to aset B

is the number of possible subsets of A X B. If n(A ) = p and n(B) = g, then
n (A x B) = pg and the total number of relationsis 2.

Example9 Let A ={1, 2} and B = {3, 4}. Find the number of relations from A to B.
Solution We have,
AXB={(13),(1,4),(23),(2 4}

Since n (AXB ) = 4, the number of subsets of AXB is 2*. Therefore, the number of
relationsfromA into B will be 24,

Remark A relation R from A to A is also stated as arelation on A.

|EXERCISE 2.2 |

1. Let A = {1, 2, 3,...,14}. Define a relation R from A to A by
R={(x,y):3x—y=0, wherex, ye A}. Write down its domain, codomain and
range.
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2. Definearelation R on the set N of natural numbersby R={(x, y) : y= x+5,

xisanatural number lessthan 4; x, y € N}. Depict this relationship using roster
form. Write down the domain and the range.

3. A={1, 2 3, 5 and B = {4, 6, 9}. Define a relation R from A to B by
R = {(x, y): the difference between x and y isodd; x e A,y e B}. WriteR in
roster form.

4.  The Fig2.7 shows a relationship
between the sets P and Q. Write this
relation
(i) in set-builder form (ii) roster form.
What isits domain and range?

5. LetA={1,2 3,4, 6}.LetRbethe
relation on A defined by Fig2.7
{(a,b):a,beA, bisexactly divisible by a}.

\ %

A\ 4

A\ 4

(i) Write Rinroster form
(i) Findthedomain of R
(i) Find therange of R.
6. Determine the domain and range of the relation R defined by
R={(x,x +5):xe€{0,1,2,3,4,5}}.
Writetherelation R = {(x, X®) : x isaprime number lessthan 10} in roster form.
LetA={x Y, 2z} and B ={1, 2}. Find the number of relations fromA to B.
9. LetRbetherelationon Z definedby R={(a,b): a, be Z,a—bisan integer}.
Find the domain and range of R.

© ~N

2.4 Functions

In this Section, we study a special type of relation called function. It isone of the most
important conceptsin mathematics. We can, visuaise afunction asarule, which produces
new elements out of some given elements. There are many terms such as ‘map’ or
“mapping’ used to denote afunction.

Definition 5 A relation f from a set A to a set B is said to be a function if every
element of set A has one and only oneimagein set B.

In other words, afunction f isarelation from a non-empty set A to a non-empty
set B such that the domain of f isA and no two distinct ordered pairsin f have the
same first element.

If fisafunction fromA to B and (a, b) € f, thenf (a) = b, where b is called the
image of a under f and a is called the preimage of b under f.
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The function f from A to B is denoted by f: A > B.
L ooking at the previous examples, we can easily seethat therelationin Example 7 is
not a function because the element 6 has no image.

Again, the relation in Example 8 is not a function because the elements in the
domain are connected to more than oneimages. Similarly, therelationin Example9is
also not a function. (Why?) In the examples given below, we will see many more
relations some of which are functions and others are not.

Example 10 Let N be the set of natural numbers and the relation R be defined on
N suchthat R={(x,y):y=2x X ye N}.

What isthe domain, codomain and range of R? Isthis relation afunction?
Solution The domain of R isthe set of natural numbers N. The codomain isalso N.
The range is the set of even natural numbers.

Since every natural number n has one and only one image, this relation is a
function.

Example 11 Examine each of the following relations given below and state in each
case, giving reasons whether it is afunction or not?
() R={(21).31),(42}, (i)R={(22),(24),(33), (44}
(i) R={(1,2),(2,3),(34),(4,5),(56), (6,7)}
Solution (i) Since2, 3, 4 arethe elementsof domain of R having their uniqueimages,
thisrelation Risafunction.
(i)  Since the same first element 2 corresponds to two different images 2
and 4, thisrelation isnot afunction.
(i)  Since every element has one and only one image, this relation is a
function.

Definition 6 A function which has either R or one of its subsets asitsrangeis called
areal valued function. Further, if its domain is also either R or a subset of R, it is
cdled a real function.

Example 12 Let N be the set of natural numbers. Define area valued function

f:N-> N by f (x) = 2x + 1. Using this definition, compl ete the table given below.
X 1 2 3 4 5 6 7

ylf@Q=...1f@=...[f@Q)=...1T@=...1fB)=..]f®6)=...|f(7) =..
Solution The completed table is given by
X 1 2 3 4 5 6 7

y | f)=3| f(2=5|13)=7|f@)=9|f(5)=11|f(6)=13| f(7) =15
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2.4.1 Some functions and their graphs
(i)  ldentity function Let R be the set of real numbers. Define the real valued
functionf: R - R by y = f(x) = x for each x € R. Such a function is called the

identity function. Here the domain and range of f are R. The graphisastraight lineas
shownin Fig 2.8. It passes through the origin.

Y

S =x
Fig2.8
(i)  Constant function Definethefunctionf: R - R by y=f(X) =c, xe R where

cisaconstant and each x € R. Here domain of f isR and itsrangeis{c}.

Y
N

N

A\ 4

8
6--
4
2

N&E—t+——F——t+——+—F+—+——+—>X
8 -6-4-2 |02 4 6 8
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The graph is aline parallel to x-axis. For example, if f(xX)=3 for each xe R, then its
graph will bealine as shown intheFig 2.9.

(i)  Polynomial function A functionf: R — R issaid to be polynomial function if
foreachxinR,y = f(x) =g +ax +ax* +..+ a X', where nis anon-negative
integer and a, a, a,,...,a €R.

The functions defined by f(x) = x* —x*+ 2, and g(x) = x* + /2 X are some examples

2

of polynomial functions, whereas the function h defined by h(x) = X3+ 2x isnot a
polynomial function.(Why?)

Example 13 Define the function : R > R by y = f(x) = X%, x € R. Complete the
Table given below by using thisdefinition. What isthe domain and range of thisfunction?
Draw the graph of f.

X -41-3|-2|-1| 0] 1 2 | 3 4
y =f(x) = x2

Solution The completed Tableis given below:

X 4| 3| =2|2|lo|l1|2]|3]| 4
y=fM=x|16| 9| 4| 1|l o0o|1 | 4|9 | 16

Domainof f ={x:xeR}. Rangeof f ={x:x>0,xe R}. Thegraph of fisgiven
by Fig2.10

Y

flo) =x? Fig2.10
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Example 14 Draw the graph of the function f :R — R defined by f (x) = x4, xeR.

Solution We have
f(0) =0, f(1) = 1, f(-1) = -1, f(2) = 8, f(-2) = -8, f(3) = 27; f(-3) =27, etc.
Therefore, f={(xX%: xeR}. v

Thegraph of fisgivenin Fig 2.11.

YI
fix)=x3
Fig2.11

f()

(iv) Rational functions are functions of the type m where f(X) and g(x) are
polynomial functions of x defined in adomain, where g(x) = 0.

1
Example 15 Define the real valued function f : R —{0} — R defined by f(X) =

xe R—{0}. Completethe Table given below using thisdefinition. What isthedomain
and range of thisfunction?

X -2 |-15(-1(-05]025| 05| 1 | 15 2

yS=

Solution The completed Tableis given by
X -2 |[-15 | -1 05| 05| 05 |1 | 15 2

e

y= ” -05(-067 1| -2 | 4 2 1] 067 05
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The domain is al real numbers except 0 and its range is aso all real numbers
except 0. The graph of fisgivenin Fig 2.12.
Y

Figggz12 S =~
(v) TheModulusfunction The function
f: R—>R defined by f(x) = |x| for each
X € R is called modulus function. For each
non-negative value of x, f(x) isequal to x.
But for negative values of x, the value of
f(x) is the negative of the value of x, i.e.,

X>0
f(X):{xx
-X,Xx<0

The graph of the modulus functionisgiven
inFig2.13.

(vi) Signum function The function
f:R—R defined by

Lif x>0
f (x) =10,if x=0
~1,if x<0

iscalled the signumfunction. The domain of the signum functionisR and therangeis



42 MATHEMATICS

theset {1, O, 1}. The graph of the signum function is given by the Fig 2.14.

(vii) Greatest integer function
The function f: R — R defined
by f(x) = [X], x € R assumes the
value of the greatest integer, less
than or equal to x. Such afunction
is called the greatest integer

Fig 2.

14

N

| e —
—_ N W

function. X'€

From thedefinition of [X], we
can see that

[X] =-1for-1<x<0

[X]= Ofor0<x<1

[X]= 1lforl<x<2

[X]= 2for2<x<3and
SO on.

The graph of the functionis
showninFig2.15.

-3 -2 -1

YI
J(x) = [x]
Fig2.15

2.4.2 Algebra of real functions In this Section, we shall learn how to add two real
functions, subtract areal function from another, multiply areal function by a scalar
(here by a scalar we mean areal number), multiply two real functions and divide one

real function by another.

@)

Addition of two real functions Letf: X - Randg: X — R be any two real

functions, where X c R. Then, we define (f + g): X — R by
(f+g) (x)=f(x)+g(x), foradl xe X.
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(i) Subtraction of areal function from another Letf: X - Randg: X — R be
any two real functions, where X ©R. Then, we define (f — g) : X—R by

(f—9) (¥) = f(x) —g(x), for all x e X.

(i) Multiplication by a scalar Let f: X—R be areal valued function and o be a
scalar. Here by scalar, we mean areal number. Then the product o f isafunction from
X toR defined by (ot f) (X) = o f (x), xeX.

(iv) Multiplication of tworeal functions The product (or multiplication) of two real
functions f:X—>R and g:X—R is a function fg:X—R defined by
(fg) (x) = f(x) 9(x), for all x e X.

This is also called pointwise multiplication.

(v) Quotient of two real functions Let f and g be two real functions defined from

f
X—R where X ©R. The quotient of f by g denoted by E isafunction defined by ,

(8 (X) =% , provided g(x) # 0, x € X

Example 16 Let f(x) = xand g(x) = 2x + 1 be two rea functions.Find

f
(f+9) (0, (f-9) (%), (fg) (X)’(E] ().

Solution We have, , ,
f+g(=x +2x+1, f-g ¥X)= x —2x-1,

X2 1
ox+1' X 7 _E

f
(fg) () =X 2x+1) = 2% +X, (EJ(X) =
Example 17 Let f(x) = \/x and g(x) = x be two functions defined over the set of non-

f
negative real numbers. Find (f + g) (X), (f—g) (X), (fg) (x) and (E] (¥).
Solution We have

f+o) = Jx+x -9 (9 = Jx -x,

3 f 1
(fg) x = VX(x)=x2 and (EJ(X) =%=X 2 x£0
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| EXERCISE 2.3|
1. Which of thefollowing relations are functions? Give reasons. If it isafunction,
determine its domain and range.
) {21,(51),1,(11,1),(24,1), (17,2)}
(i {(22),4,2,(6,3),(84),(105),(12,6), (14,7)}
(i) {(13),(1,5),(2,5).

2. Findthedomain and range of thefollowing real functions:
) 69 =~ ¥ (@) f6) = Jo—x2.

3. Afunctionfisdefined by f(x) = 2x —5. Write down the values of
) £, (i) (@), (i) (3.

4. Thefunction ‘t" which maps temperature in degree Celsius into temperature in

oC

degree Fahrenheit is defined by t(C) = = +32.
Fnd (i) t(0) (i) t(28) (iii) t(-10) (iv) Thevalueof C, whent(C) = 212.
5. Find therange of each of the following functions.

(i) f(x) =2-3x,xe R,x>0.

() f() =x*+2, xisarea number.

@)y f(x) =x, xisarea number.

Miscellaneous Examples

Example 18 Let R be the set of real numbers.

Define the real function }{\
f: R—=>R by f(x) = x + 10

and sketch the graph of this function. f0.10)
Solution Here (0) = 10, f(1) = 11, f(2) = 12, ..., ’
f(10) = 20, etc., and

f(-1)=9,f(2) =8, ... f(-10)=0andsoon. 10.0) -

Therefore, shape of the graph of the given X'< / [ i
function assumes the form as shown in Fig 2.16.
Remark The function f defined by f(x) = mx + ¢, ;{’
x e R,iscalled linear function, where mand c are flx) =x+10
constants. Abovefunctionisan example of alinear Fig 2.16

function.
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Example 19 Let R be arelation from Q to Q defined by R = {(a,b): a,b € Q and
a—be Z}. Show that

() (aa) e Rfordlae Q

(i) (ab)e Rimpliesthat (b, a) € R

(i) (ab) e Rand (b,c) e Rimpliesthat (a,c) eR

Solution (i) Since,a—a=0¢€ Z,if followsthat (a, a) € R.
(i) (a,b) € R impliesthat a —b e Z. So, b —a € Z. Therefore,
(b,a) e R
(i) (&, b)and(b,c) € Rimpliesthata—be Z.b—ce Z. So,
a—-c=(a—-b)+ (b—c) e Z. Therefore, (a,c) € R

Example20 Letf={(1,1), (2,3), (0,-1), (-1, -3)} bealinear functionfromZ into Z.

Find f(x).

Solution Sincefisalinear function, f (X) = mx + c. Also, since (1, 1), (0,-1) € R,
f()=m+c=1andf (0) =c=-1. Thisgivesm= 2 and f(x) = 2x — 1.

X2 +3x+5
X2 —5x+4

Solution Since X" —5x + 4 = (x=4) (x-1), the function f (x) is defined for all real
numbers except at X = 4 and x = 1. Hence the domain of fisR — {1, 4}.

Example 22 The function f is defined by

Example 21 Find the domain of the function f (X) =

1- x, x<0
1 ,x=0
X+1, x>0

f(x) =

Draw the graph of f (X).
Solution Here, f(x)=1-x,x<0, thisgives X'ttt 1| 2| 3| >x
f(—4) =1-(-4)=5; -3 2 -1 |0
f—3) =1-(-3)=4,
f—2) =1-(-2)=3
f(-l) =1-(-1) =2 et
and (1) =2,f(2)=3,(3) =4 ¢
f(4) =5andsoonfor f(x) =x+1,x>0.
Thus, thegraph of fisasshownin Fig 2.17 Fig2.17
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Miscellaneous Exercise on Chapter 2

X% ,0<x<3

Therelation fisdefined by f(X)= {3)( 3<x<10

x?,0<x<2
3x,2<x<10
Show that f isafunction and g is not afunction.
fL)-fQ

11-1

Therelation g is defined by Q(X)={

If f (x) = X, find

X2 +2x+1
x> —8x+12°

Find the domain and the range of thereal function f defined by f (x) = /(x-1) .

Find the domain of the functionf (x) =

Find the domain and the range of the real function f defined by f () = |x—1 .

2
X
Let f= {(X’h iji Xe R} be a function from R into R. Determine the range

of f.
Let f, g : R—R be defined, respectively by f(x) = x + 1, g(x) = 2x — 3. Find
f

f +g,f—gand g
Let f = {(1,1), (2,3), (0,-1), (-1, =3)} be a function from Z to Z defined by
f(x) = ax + b, for some integers a, b. Determine a, b.
Let Rbearelationfrom N to N definedby R={(a,b):a,beNanda= b2}.Are
thefollowing true?

() (aa@)e R,foradlae N (i) (ab) e R,implies(b,a) e R

(i) (ab) e R, (b,c) e R implies(ac) € R.
Justify your answer in each case.
LetA={1,234},B={15911,1516} and f={(1,5),(2,9), (3,2), (4,5), (2,11)}
Arethefollowing true?

(i) fisareationfromAtoB (i) f isafunctionfromA to B.
Justify your answer in each case.
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Let f be the subset of Z x Z defined by f = {(ab, a+ b) : a, be Z}.Isfa
function from Z to Z? Justify your answer.

LetA={910,11,12,13} and let f : A—N be defined by f (n) = the highest prime
factor of n. Find the range of f.

Summary

In this Chapter, we studied about rel ations and functions. The main features of
this Chapter are asfollows:
¢ Ordered pair A pair of elements grouped together in a particular order.
¢ Cartesian product A x B of two setsA and B is given by
AxB= {(ab):ae A be B}
Inparticular R x R ={(x, y): X, ye R}
andRxRxR=(xY,2:XY,ze R}
¢ If (a,b) = (X, y), thena=xand b=Yy.
¢ If n(A) = p and n(B) = g, then n(A x B) = pg.
*AX0=0
¢ Ingeneral, Ax B =B xA.

¢ Relation A relation R from a set A to a set B is a subset of the cartesian
product A x B obtained by describing arelationship between thefirst element
x and the second element y of the ordered pairsin A x B.

¢ Theimage of an element x under arelation R isgiven by y, where (X, y) € R,

¢ The domain of R is the set of al first elements of the ordered pairs in a
relation R.

¢ Therange of the relation R is the set of all second elements of the ordered
pairsinarelation R.

¢ Function A function f from aset A to aset B isa specific type of relation for
which every element x of set A has one and only oneimagey in set B.

We write f: A—=B, where f(x) = .
¢ A isthedomain and B is the codomain of f.
¢ Therange of the function is the set of images.
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¢ A real function has the set of real numbers or one of its subsets both as its
domain and asits range.

¢ Algebra of functions For functionsf: X — Randg: X — R, we have
(f+9) (¥ =f(x) +9g(x), xe X.
(f-9 ) =f()-9(),xe X.
fg)g (¥ =1 .g(),xe X.
kh(x) =kf(x)), xe X.

f f(x)
E(X) =90 X€ X, g(x) # 0.

Historical Note

The word FUNCTION first appears in a Latin manuscript “Methodus
tangentium inversa, seu de fuctionibus’ written by Gottfried Wilhelm Leibnitz
(1646-1716) in 1673; Leibnitz used the word in the non-analytical sense. He
considered a function in terms of “mathematical job” — the “employee”’ being
just acurve.

On July 5, 1698, Johan Bernoulli, in aletter to Leibnitz, for the first time
deliberately assigned a specialised use of the term function in the analytical
sense. At the end of that month, Leibnitz replied showing his approval.

Function is found in English in 1779 in Chambers' Cylopaedia: “The
termfunctionisusedin agebra, for an analytical expression any way compounded
of avariable quantity, and of numbers, or constant quantities’.

/
— 0 —



Chapter 3

(TRIGONOMETRICFUNCTIONS)

A mathematician knows how to solve a problem,

he can not solve it. — MILNE ¢

3.1 Introduction

Theword ‘trigonometry’ is derived from the Greek words
‘trigon’ and ‘metron’ and it means ‘ measuring the sides of
atriangle’. The subject was originally developed to solve
geometric problemsinvolving triangles. It was studied by
sea captains for navigation, surveyor to map out the new
lands, by engineers and others. Currently, trigonometry is
used in many areas such as the science of seismology,
designing electric circuits, describing the state of an atom,
predicting the heights of tides in the ocean, analysing a
musical tone and in many other areas.

In earlier classes, we have studied the trigonometric
ratios of acute angles as the ratio of the sides of a right

AryaBhatt
(476-550B.C.)

angled triangle. We have also studied the trigonometric identities and application of
trigonometric ratios in solving the problems related to heights and distances. In this
Chapter, wewill generalisethe concept of trigonometric ratiosto trigonometric functions

and study their properties.
3.2 Angles

Angleisameasure of rotation of agiven ray about itsinitial point. Theoriginal ray is

B Vertex

Initial side

Vertex Initial side

(i)Positive angle Fig 3.1 (ii) Negative angle
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called the initial side and the final position of the ray after rotation is called the
terminal side of the angle. The point of rotation is called the vertex. If the direction of
rotation isanticlockwise, theangleissaid to be positiveand if the direction of rotation
isclockwise, thentheangleisnegative (Fig 3.1).

The measure of an angle is the amount of Initial side \A
rotation performed to get the terminal sidefrom o
the initial side. There are severa units for
measuring angles. The definition of an angle Fig 3.2
suggests a unit, viz. one complete revolution from the position of the initial side as
indicatedinFig 3.2.

Thisis often convenient for large angles. For example, we can say that arapidly
spinning wheel ismaking an angle of say 15 revolution per second. We shall describe
two other units of measurement of an angle which are most commonly used, viz.
degree measure and radian measure.

Terminal Side 'B

1

th
3.2.1 Degree measure If arotation fromtheinitial sdetotermina sideis (%] of

arevolution, theangleis said to have ameasure of one degree, written as1°. A degreeis
dividedinto 60 minutes, and aminuteisdivided into 60 seconds. Onesixtieth of adegreeis
cdled aminute, written as 1’, and one sixtieth of aminuteiscaled a second, writtenas 1”.
Thus, 1°=60, 1 =60"
Some of the angles whose measures are 360°,180°, 270°, 420°, — 30°, — 420° are
showninFig3.3.
360° °

A © 270
B 0]

—30° 420
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3.2.2 Radian measure Thereisanother unit for measurement of an angle, called
the radian measure. Angle subtended at the centre by an arc of length 1 unitin a
unit circle (circle of radius 1 unit) is said to have a measure of 1 radian. In the Fig
3.4(i) to (iv), OA istheinitial sideand OB istheterminal side. Thefigures show the

1 1
angles whose measures are 1 radian, —1 radian, 15 radian and —15 radian.

(i)

B 4
(iv)
Fig 3.4 (i) to(iv)
We know that the circumference of a circle of radius 1 unit is 2rt. Thus, one
completerevolution of theinitial side subtendsan angle of 2r radian.

More generally, inacircleof radiusr, an arc of lengthr will subtend an angle of
1radian. Itiswell-known that equal arcs of acircle subtend equal angle at the centre.
Sinceinacircle of radiusr, an arc of length r subtends an angle whose measure is 1
radian, an arc of length | will subtend an angle whose measureis I? radian. Thus, if in
acircleof radiusr, an arc of length | subtends an angle 6 radian at the centre, we have

|
0 =—orl =re.
r
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3.2.3 Relation between radian and real numbers A
Consider the unit circlewith centre O. Let A be any point 1
on the circle. Consider OA as initial side of an angle.
Thenthelength of anarc of thecirclewill givetheradian {1
measure of the angle which the arc will subtend at the
centre of the circle. Consider the line PAQ which is
tangent to the circle at A. Let the point A represent the 0
real number zero, APrepresents positive real number and
AQ represents negative real numbers (Fig 3.5). If we

rope the line AP in the anticlockwise direction along the -
circle, and AQ inthe clockwisedirection, then every real

number will correspond to a radian measure and 4 2
conversely. Thus, radian measures and real numbers can Fig 35 Yo

be considered as one and the same.

3.2.4 Relation between degree and radian Since acircle subtends at the centre
an angle whose radian measure is 2r and its degree measure is 360°, it follows that

2rn radian =360° or mradian = 180°
The above relation enables us to express a radian measure in terms of degree
measure and a degree measure in terms of radian measure. Using approximate value

ofnas7,wehave

O

lradian= =57° 16" approximately.

T

Also 1 :ﬁ

radian = 0.01746 radian approximately.

The relation between degree measures and radian measure of some common angles
aregiveninthefollowing table:

Degree | 30° 45° 60° 90° 180° 270° 360°
Radi T T T il 3t
Sl 4 3 2 & 2 | =
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Notational Convention
Since angles are measured either in degrees or in radians, we adopt the convention
that whenever we write angle 6°, we mean the angle whose degree measureis 6 and
whenever we write angle 3, we mean the angle whose radian measure is f3.

Note that when an angleis expressed in radians, the word ‘radian’ is frequently

T
omitted. Thus, T =180° and % =45 arewritten with the understanding that  and -

are radian measures. Thus, we can say that

T

Radian measure = 180 X Degree measure

180
Degree measure = X Radian measure

Example 1 Convert 40° 20" into radian measure.
Solution We know that 180° = r radian.

H 40° 20 =40+ degree= - x 22 raion = 2
ence =40 3 degree= o0 x — radian= = redian.
121 i
Therefore 40° 20 = —— radian.

540
Example 2 Convert 6 radians into degree measure.
Solution  We know that 7 radian = 180°.

_ 180 1080x 7
Hence 6radians = — x 6 degree = —_———degree
s 22
7 7 x _
= 3431—1degree =343° + minute [as1° =607
2
=343°+38 + 1 minute [as1 =60"]
=343° + 38 +10.9” =343°38' 11” approximately.
Hence 6 radians = 343° 38’ 11” approximately.

Example3 Findtheradiusof thecirclein which acentral angle of 60° interceptsan

22
arcof length37.4cm (use m= 7).
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Solution Herel = 37.4 cm and 6 = 60° = 2o~ ragian =
ution Herel =37.4cmand 6 = = 180 3
I
Hence, byr= o we have
37.4x3 _ 37.4x3x7
r= = =35.7cm
o 22

Example4 Theminute hand of awatchis 1.5 cmlong. How far doesitstip movein
40 minutes? (Use it = 3.14).

Solution In 60 minutes, the minute hand of awatch completesonerevolution. Therefore,

2 2
in 40 minutes, the minute hand turnsthrough 3 of arevolution. Therefore, 0 = 3 x 360°

4
or ?n radian. Hence, the required distance travelled is given by

l=r9 = 1.5><4—gcm=27ccm:2><3.14cm=6.280m.

Example5 If thearcs of the same lengthsin two circles subtend angles 65°and 110°
at the centre, find the ratio of their radii.

Solution Letr, andr, bethe radii of the two circles. Given that

i 13n
0, =65° = x5 = = ragian

180 36
i 221
= o= —x110 = — i

and 0, =110 180X 36 radian
Let | be the length of each of the arc. Then| = r 6, = r.0,, which gives

13n . 22n e n 22

— =— e, = ==

36 “t 36 2 13
Hence roir,=22:13.

| EXERCISE 3.1

1. Findtheradian measures corresponding to the following degree measures:
(i) 25° (i) —47°30 (iii) 240° (iv) 520°
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Find the degree measures corresponding to the following radian measurs

(Use m =g).
7

: 1_1 . 4 L O oIt
0 1 (i) - (i) = V) -
A wheel makes 360 revolutionsin one minute. Through how many radians does

it turn in one second?

Find the degree measure of the angle subtended at the centre of a circle of

22
radius 100 cm by an arc of length 22 cm (Use © = 7).

Inacircle of diameter 40 cm, the length of achord is 20 cm. Find the length of
minor arc of the chord.

If in two circles, arcs of the same length subtend angles 60° and 75° at the
centre, find theratio of their radii.

Find the anglein radian through which apendulum swingsif itslengthis 75 cm
and th e tip describes an arc of length

(i) 10cm (i) 15cm

3.3 Trigonometric Functions

(i) 21cm

In earlier classes, we have studied trigonometric ratios for acute angles asthe ratio of
sides of aright angled triangle. We will now extend the definition of trigonometric
ratiosto any angleintermsof radian measure and study them astrigonometric functions.

Consider a unit circle with centre
at origin of the coordinate axes. Let
P (a, b) be any point on the circle with
angleAOP=xradian, i.e., length of arc
AP=x(Fig 3.6).

Wedefinecosx=aandsinx= b
SinceAOMPisaright triangle, we have

OM? + MP>=OP?or a2+ b* =1
Thus, for every point on the unit circle,
we have

a2+ b’=1orcos’x +sin’x=1

-1,0C
' &

N

ODIB P h

~

. . (03_1) D
Since one complete revolution
subtends an angle of 2r radian at the v
YV
T .
centre of the circle, ZAOB = —, Fig 3.6

2
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3n o Aled
- — arec

2 2

quadrantal angles. The coordinates of the points A, B, C and D are, respectively,
(1, 0), (0, 1), (-1, 0) and (0, —1). Therefore, for quadrantal angles, we have

ZAOC=mand ZAOD = .All angleswhich areintegral multiples of

cos0° =1 sin0° =0,
Cco! E—0 'nE—l
52~ shs =
cost=-1 snt=0
0 3—T[—O 'ns—n— 1
cos > = S > =T
cos2r =1 sn2rn=0

Now, if we take one complete revolution from the point P, we again come back to
same point P. Thus, we aso observe that if x increases (or decreases) by any integral
multiple of 2r, the values of sine and cosine functions do not change. Thus,

sin(2nt+x) =sinXsne Z, cos(2nt +X) =cosX: ne Z
Further, sinx=0,if X=0,tx, + 21, *+ 3r, ..., i.e,, whenxisan integral multiple of

3n 5n

,+ —, ... 1.e, cos x vanishes when x is an odd

=0,if Xx=4% —
and cosx =0, i 2 >

+

T
2!
. T
multiple of 5 . Thus
sin x = 0implies x = nw, where n is any integer
T
cos X = 0impliesx = (2n + 1) X where n is any integer.

We now define other trigonometric functionsin terms of sine and cosine functions:

1
COSEC X = Snx’ X # nm, where n is any integer.

1 T
= ,X#(2n +1) -, wherenisany integer.
COSX ( ) 2 y e

t Sinx (2n +1)— , wheren isany int
ax = , X#£(Zn +1)—,wherenisany Integer.
COSX 2 y Integ

COSX _ _
cotx = Snx’ X # N 1, where n is any integer.
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We have shown that for all real x, sin?x + cos?x =1

It followsthat

1+ tan?x = sec?x

1 + cot?x = cosec? X

(why?)
(why?)

In earlier classes, we have discussed the values of trigonometric ratios for 0°,
30°, 45°, 60° and 90°. The values of trigonometric functionsfor these angles are same
asthat of trigonometric ratios studied in earlier classes. Thus, we have the following

table:
e | T || 2| Z 3
6 4 3| 2 & 2 | 7"
. 1 | 1 | B
sn 0 5 NA > 1 0 -1 0
N I
cos 1 > NA 5 0 -1 0 1
1 not not
tn | 0 | B | 1 | V3 |gdined| © | qefined| °
The values of cosec X, sec x and cot X %
arethereciprocal of thevaluesof sinx, N
cos x and tan x, respectively.
eSpectivey O [B b s
3.3.1 Sign of trigonometric functions
Let P (a, b) be apoint on the unit circle 1
with centre at the origin such that  (-1,0) C 5% rb \I(l, 0
ZAOP = x. If ZAOQ = — x, then the X < oLy fA >X
coordinates of the point Q will be (a, —b) '
(Fig 3.7). Therefore B 7/
CoS (— X) = cos X ©,-1) [p Q(a-b)
and sin(-x)=-sinx
v
Since for every point P (a, b) on Y'

the unit circle, =1 < a <1 and

Fig 3.7
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—1< b<l,wehave—1<cosx<land-l<snx<1foralx We haveleantin

previous classes that in the first quadrant (0 < x< g ) aand b are both positive, in the
second quadrant (g < X <m) a is negative and b is positive, in the third quadrant

3n 3
(mr<x< 7) a and b are both negative and in the fourth quadrant (77[ <X<2m)ais

positive and b is negative. Therefore, sin x is positive for 0 < x < &, and negative for
T

. o 3n
> , hegativefor - < x< — andalso

7 <Xx<2m. Similarly, cosxispositivefor 0 <x< > >

3n
positive for —— < x < 2r. Likewise, we can find the signs of other trigonometric

2
functionsin different quadrants. In fact, we have the following table.

I I [l v
sinx + + — -
COS X & - - +
tan x + = + =
COSEC X + + - _
Sec X + - _ +
cot X & - + -

3.3.2 Domain and range of trigonometric functions From the definition of sine
and cosine functions, we observe that they are defined for all real numbers. Further,
we observe that for each real number x,

—1<sinx<land —1<cosx<1

Thus, domain of y = sinxand y = cos X isthe set of all real numbers and range
istheinterval [-1, 1],i.e,—1<y<1.
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1

Sinx,thedomain of y=cosec xistheset{ x: xe R and
x#nn,ne Z} andrangeistheset{y:ye R,y >1ory <—1}. Similarly, thedomain

Since cosec X =

of y=secxistheset {x:xe Rand x# (2n + 1) g ne Z} and range is the set

{y:y € Rjy <-1ory=>1}. The domain of y = tan x isthe set {x: x e R and

X#((2n+ 1) g n e Z} and range is the set of al rea numbers. The domain of

y=cot xistheset {x:x € Randx#=nm, ne Z} and therangeisthe set of al real
numbers.

T
—,sinx
2

T
increases from 0 to 1, as X increases from P to i, sin x decreases from 1 to 0. In the

We further observe that in the first quadrant, as x increases from O to

3
third quadrant, as x increases from rt tog , Sin x decreases from 0 to —1and finaly, in

. . ) 3n
the fourth quadrant, sin x increases from —1 to O as x increases from > to 2m.
| quadrant Il quadrant Il quadrant IV quadrant

sin

increases from0to 1

decreasesfrom 1to O

decreases from 0 to —1

increases from—1to O

Ccos

decreasesfrom 1to O

decreasesfrom 0 to — 1

increases from—1to 0

increases from 0 to 1

tan |increasesfrom 0 to oo [ increasesfrom —eoto O | increases from 0 to oo |increasesfrom —ooto 0
cot |decreasesfrom co to Of decreasesfrom O to—oo [ decreasesfromeo to 0 |decreasesfrom 0to —o
sec  |increases from 1 to oo | increases from —eoto—1| decreases from —1to—o| decreases from oo to 1
coxC | decreases from co to 1| increasesfrom 1to oo | increases from —eoto—1 | decreases from—1to—co

Similarly, we can discuss the behaviour of other trigonometric functions. In fact, we
havethefollowingtable:

Remark In the above table, the statement tan x increases from 0 to < (infinity) for

T T
0<x< P simply means that tan x increases as x increases for 0 < x < P and
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assumes arbitraily large positive values as Xapproachesto g . Similarly, to say that

cosec x decreases from —1 to — e» (minus infinity) in the fourth quadrant means that
3n
cosec x decreases for X € (7 , 2m) and assumes arbitrarily large negative values as

x approachesto 2r. The symbolse and —e<o simply specify certain types of behaviour
of functions and variables.

We have already seen that values of sin x and cos x repeats after an interval of
2n. Hence, values of cosec x and sec X wiII also repeat after an interval of 2r. We

X o S D A
2
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] Y ] ]
c 2t/ ;
' ' '
X . NS
X'<€ gy o 'L =
21 -1 :2 !
21 ;
Y’
y=secx y = cosec x
Fig3.12 Fig3.13

shall seein the next section that tan (rt + X) = tan x. Hence, values of tan x will repeat
after an interval of w. Since cot x isreciprocal of tan x, its values will aso repest after
aninterval of t. Using thisknowledge and behaviour of trigonometic functions, we can
sketch the graph of these functions. The graph of these functions are given above:

3

Example6 If cosx= — =, xliesin thethird quadrant, find the values of other five
5
trigonometric functions.

: . 3 5
Solution Sincecosx = 5 , we have secx = 73
Now sinex + cogx =1, i.e, sinx=1—-cos?x
or sifx=1 0o _16

T 2% 5
. 4
Hence snx=x= 5
Since x liesin third quadrant, sin x is negative. Therefore
. 4
nx=-——
sin x 5

which also gives

COSeC X = E
T4
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Further, we have

snx 4 CosX 3
tanx=——=— and cotx=—F—""=—.
cosx 3 snx 4

5
Example 7 If cot x = — ITY x liesin second quadrant, find the values of other five

trigonometric functions.

12
Solution  Since cot x = —i,wehavetanx == —
12 5
N sec? —1+t2—1+&—@
ow X = an?x = 25 = o5
13
Hence SeC X =% 5
Since x liesin second quadrant, sec x will be negative. Therefore
e 13
X==—,
5
which also gives
5
COSX=——
13
Further, we have
e ¢ S 2y 5 1w
sinx= tan X cosx = (— 5)><(— 13" 13
d COSec ! 13
an X=——"=—.
snx 12
. . 3ln
Example 8 Find the value of sin 3
Solution We know that values of sin x repeats after an interval of 2rt. Therefore
V3

sin 3 =sin( 3)-s|n3— >
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Example 9 Find the value of cos (—1710°).

Solution We know that values of cos x repeats after an interval of 2x or 360°.
Therefore, cos(—1710°) = cos (—1710° + 5 x 360°)
= cos (—1710° + 1800°) = cos 90° = 0.

|EXERCISE 3.2 |

Find the values of other five trigonometric functionsin Exercises1to 5.

1
1. cosxz—z,inesinthirdquadrant.
: 3

2. snng,xllesmsecondquadrant.
3

3. cotx=z,xllesmthlrdquadrant.
13

4. secng,xllesmfourthquadrant.

5
5. tanx=- 7, xliesin second quadrant.

12°
Find the values of the trigonometric functionsin Exercises 6 to 10.
6. sin765° 7.  cosec (—1410°)
8. tan 1om 9. sn(- &)
3 3

15
10. cot (- T)

3.4 Trigonometric Functionsof Sum and Differenceof TwoAngles

In this Section, we shall derive expressionsfor trigonometric functions of the sum and
difference of two numbers (angles) and related expressions. The basic resultsin this
connection are called trigonometric identities. We have seen that

1. sn(-x) =—sinXx
2. cos (—x) = cos x
We shall now prove some more results:



64 MATHEMATICS

3. cos(x+y)=cosxcosy—snxsny

Consider the unit circle with centre at the origin. LetX be the angle P,OP and y be
the angle P,OP,. Then (x +y) isthe angle P,OP,. Also let (—Y) be the angle P,OP,.
Therefore, P, P,, P, and P, will have the coordinates P (cos X, sin x),
P, [cos (X +Y), sin (X +y)], P,[cos (—y), sin (-y)] and P, (1, 0) (Fig 3.14).

Y
A

P, (cos x, sin x)

e N

— <

e
X'<€

P, [cos(x + y), sin(x + y)]

P;[cos(-y), sin(-y)] ~——]

Fig 3.14

Consider thetriangles P,OP, and P,OP,. They are congruent (Why?). Therefore,
P,P, and P,P, are equal. By using distance formula, we get

P,P.,? =[cos x —cos (—Y)]* + [sin X —sin(-y]?
= (cosx—cosy)? + (sin x + sin y)?
= COS*+ COS* Yy —2 COSX COSY + SIIPX + SinPy + 2sinx siny
=2-2(cosxcosy—sinxsiny) (Why?)
Also, P,P2=[1—-cos(x+y)]?+[0—sin(x+Y)]?
=1-2cos(x+y)+cos(x+y)+sn(x+y)

=2-2cos(x+vy)
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Since P,P, = PP, we have PP? = PP2
Therefore, 2 -2 (cosx cosy —sinxsiny) =2 —2 cos (X +Y).
Hence cos(x+Yy) =cosx cosy—sinxsiny

4. cos(X—y)=cosxcosy+snxsny
Replacing y by —y in identity 3, we get
cos (X + (—y)) =cosxcos(—y)—sinxsin (-Y)
or cos(X—Yy)=cosxcosy+sinxsny

5. cos(g—x) =sin X
If we replace x by g and y by xin Identity (4), we get

T T . T .
cos(E—X)=cos§ CcosX +sin P sinx =snx.

T
6. sn (E—X) = COS X

Using the Identity 5, we have

o z_(ﬁ_xj_
sm(z—x)—cos 513 = COS X.
7. sin(x+y)=sinxcosy+ cosx siny

We know that

sin (x +y) = cos (g—(XJr Y)j = cos ((g—x)—YJ

n T .
= cos (5, ~X) cosy +sin (E—X)smy

=sinXCcosy+cosxsiny
8. Sn(X—y)=sSNXCOSy—COSX SNy
If wereplacey by -y, in the Identity 7, we get the result.

9. By taking suitable values of x and y in the identities 3, 4, 7 and 8, we get the
followingresults:

T ) i T
cos (§+X) = —sn x sin (§+X) = COS X

COS (T —X) = —COS X sn (k—x) =snx
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COS (m + X) = — COS X sn(m+Xx) =—snx

COS (21 — X) = CcoS X sin (2 —x) = —sin X
Similar resultsfor tan x, cot X, sec x and cosec x can be obtianed from the results of sin
X and cos X.

10. If none of the angles x, y and (x + y) is an odd multiple of g then

tan X +tan y

tan (x +y) = l1-tan xtany

Since none of the x, y and (x + y) is an odd multiple of g it follows that cos x,
cosy and cos (x + y) are non-zero. Now

sin(x+y) sSINXCosy+cosxsiny
CoS(X+Y) COsSXxcosy—sinxsiny

tan(x+y) =

Dividing numerator and denominator by cos x cosy, we have

sin xcosy N cosxsiny
COSXCOSY COSXCOSY

tan (x+y) = Cosxcosy sinxsiny
COSXCOSY COSXCOSY
tanx+tany
T l-tanxtany
tan x —tan y
11. tan (x—-y)=

l+tan xtany
If wereplacey by —y in Identity 10, we get
tan (x—y) =tan [x + (- )]
tanx+tan(-y) tanx—tany
- 1-tanxtan(-y) - 1+tanxtany

12. If none of the angles x, y and (X +Yy) is a multiple of &, then

cot xcot y—1

cot (X +Y) = "ot y+cot x
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Since, none of the x, y and (x + y) is multiple of &, we find that sin x sin y and
sin (X +y) are non-zero. Now,

COS(X+Y) COSXCOsSy—sinxsiny
sin(X+Yy) SNXCoSy+CosSxsiny

cot (x+vy)=

Dividing numerator and denominator by sin x siny, we have

cot (x +Y) cot xcoty—1
X =
y cot y + cot X
cot x cot y+1
13, cot (x —y)= ZXEOAYT2
cot y — cot X
If we replacey by —y in identity 12, we get the result
. _ 1—tan®x
14, cos2x =coX—SiN?X=2coX—-1=1-28SnN’xXx= ——5—
1+tan” x

We know that
COS (X +Yy) =CoSX cosy—sinxsiny
Replacing y by x, we get
COS 2X = COSX —SiPX =2 cos? X — 1
= coX — (1 —cos’x) =2 cosx — 1
Again, COS 2X = COS* X — Sin?X
=1-sSim®Xx—six=1-2smx.
_ cos® Xx—sin?x
We have COS2X=COSX—SiN2X = ———5_
cos? x+sin? x

Dividing each term by cos® x, we get

1—tan®x

COS2X = ———5—
1+tan?x

_ _ 2tan x
15. sin 2x = 2 Sinx €CosS X = 1+tan? x

We have
sin(x+y)=sinXxcosy+ cosxsiny
Replacing y by x, we get sin 2x = 2 Sin X COS X.
2sin Xcosx

Agan SN 2X= 0@ xrsin? x
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Dividing each term by cos? x, we get
2tanx
1+tan® x

sin 2x =

2tan x

16. tan 2x = 1—tan?x

We know that

tanx+tany

@ (X+Y) =1 tanxtany

Replacing y by x , we get tan2x=2ti;(
1-tan“ x
17. sin 3x =3sin Xx—4sn3x
We have,
Sin3x=gin (2x + X)
=sin 2X cos X + COS 2X Sin X
=2siNXCoSXCcosX+ (1—2sin?x) sin x
=2sinx(1-simx) +sinx—2sin®x
=2sSnXx—298nNx+snx—2snx
=3sinx—4sinx
18. cos 3x= 4 cos’x — 3 cos X
We have,
C0S 3X = COS (2X +X)
= CO0S2X COSX—Sn2xsinX
= (2c08*x — 1) cos X — 2sin X COS X Sin X
= (2c08*x — 1) cos x — 2c0s X (1 — cog x)
= 2C0S*X — COS X — 2C0S X + 2 cos*X
= 4c0Ss*X — 3C0S X.

3tan x—tan® x
1-3tan?x
We have tan 3x =tan (2x + X)

19. tan3x=

2tan X
_ tan 2x+tan x _m
“1-tn2xtanx ,_2anx.tanx
1—tan? x

+ tan X
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_ 2tan x+tan x—tan®x _ 3tan x —tan®x

1-tan’x—2tan’x  1—3tan’x
20. (i) cosx +cosy = ZcosXJr—ycos%
. Xty Xy
(i) cosx —cosy=— 2sin sn——
2 2
. . . Xty X=Yy
(iii) sinx+siny= 2sin —cosT
_ , _ X+y . X-Yy
(iv) sinx —siny= 2008 ——Sin——
2 2
We know that
cos (X +Yy) =cosxcosy—sinxsiny . (D
and COS(X—Y) =CcosSXxcosy +sinxsiny .. (2
Adding and subtracting (1) and (2), we get
COS (X +Y) + Ccos(Xx—y) = 2 COSX COSYy .. (3)
and cos(Xx+y)—cos(Xx—y)=—2snxsiny . (4
Further sin(x+y)=sinxcosy+ cosxsiny .. (5
and sin(x—y) =sinXcosy—cosXxsiny ... (6)
Adding and subtracting (5) and (6), we get
sn(x+y)+sn(x—y)=2snxcosy .. (1)
sn(x+y)—sin(x—y) =2cosxsiny .. (8)

Letx+y=06and x—y=¢. Therefore

{5 er()

Substituting the values of x and y in (3), (4), (7) and (8), we get

0+ 0—¢
cos O + cosd = 2 cos (T)COS (Tj

cosO —cosd = —2sin (e+¢jsin(e_¢j
2 2

00—
sn®+snd =2sin (%JCOS(TQ
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sin®—sin ¢ =2 cos (%)sin (%)

Since 6 and ¢ can take any real values, we can replace 6 by x and ¢ by y.
Thus, we get

Xty XY . X+Y . X-Y
COSX + COSY =2 C0S ——C0S—; COSX—COSYy =—2sn ——Sn——,
2 2 2 2
X+ X— X+Yy . X—
SinX+Siny=25inTyCOSTy;SinX—Siny:ZCOSTySnTy.

Remarks Asapart of identities given in 20, we can prove the following results:
21. (i) 2cosx cosy=cos(x +Yy)+cos(x—y)

(i) —2sinxsiny=cos (X +y) —cos (X —Y)

(iif) 2snxcosy=8n (x+y)+sn(X-yY)

(iv) 2cosxsiny=gn (x+y)—sn (x-y).
Example 10 Prove that

3sin£sec£—4sinicot5=1
6 3 4

Solution We have

. T o . 5n o
= 3sin—sec——-4sin—cot—
L.H.S. 603 5 )

—3x = x2-45 (n—ljxl—g 4sin =
= 2 —4sin 6 =3-4sn ¢
1
=3—4><§ =1=RH.S
Example 11 Find the value of sin 15°.

Solution  We have
sin15° =sin(45°—-30°)
= sin 45° cos 30° — cos 45° sin 30°

22 22 22

' 137
Example 12 Find the value of tan 12
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Solution We have

13m _ T+ ——tan rr
tan o =tan | Ty ) S ten 4 6

Example 13 Prove that

sin(x+y) tanx+tany
sin(x—-y) tanx—tany-

Solution We have

sm(x+y) smxcosy+cosxsmy
sin(x—Yy) SINXCOSy—cosxsiny

Dividing the numerator and denominator by cos x cosy, we get

L.H.S.

sin(x+y) tanx+tany
sin(x—-y) tanx—tany-

Example 14 Show that
tan 3 xtan 2 X tan X = tan 3x —tan 2 X — tan X

Solution We know that 3x = 2x + X
Therefore, tan 3x =tan (2x + X)

tan2x+tanx
or tan3x=———m——

1-tan 2xtan x
or tan 3x —tan 3x tan 2x tan X = tan 2x + tan x
or tan 3x —tan 2x — tan x = tan 3x tan 2x tan x
or tan 3x tan 2x tan x = tan 3x —tan 2x —tan x.

Example 15 Prove that
cos(%+ xj+cos(%— Xj=\/§ COSX

Solution Using the Identity 20(i), we have
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LHS = cos(E+ xj + cos(ﬁ— X
4 4

b 1
=2 — =2x 7= =/ =R.H.S.
cos 4 COS X X > COS X 2cosx =RH.S

COS 7X + COS 5x

———————=Cot X
Example 16 Prove that SN 7X—sinBx

Solution Using the Identities 20 (i) and 20 (iv), we get

X+ 5% 7X—5x%x
Cos

2cos 2 2 CoSX

L.H.S. = =——=cotx =RH.S.
2(:05‘7x+5xsin7x—5x snx

2

in5x—2sin in
Example 17 Prove that _3 Sx=29n3x+ s X=tanx
COS5X—CoSX

Solution We have

Sn5x-2sin3x+sinx _ SN5x+sinXx—2sin3x
COS5X—C0oSX COS5X—C0oSX

LHS. =

_2sin3xcos2x—2sin3x _  sin3x (cos2x-1)
—2sin3xsin2x Sn3xsin2x

_1-cos2x_ 2sin’X
Sin2x 2SN XCosX

= tanx = RH.S
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| EXERCISE 3.3|
Prove that:
1 sin2£+cosZE tanZE——1 0 28—+ sec? ECOSZE—E
' 6 37T LI R
cot? X+ cosec > + 3tan? T = 6 4. 262 2" 4 2002 ™ 4 258c2 % ~ 10
6 6 4 4 3
5. Findthevaueof:
(i)sin75° (i) tan 15°
6. Provethefollowing:
cos| = - x |cos E—y —sin| £ -xlsin E—y =sin(x+y)
4 4 4 4
T
tan | —+ X 2
(4 j (1+tan x] cos (n+X) cos(—X) )
7. = 8. = cot"x
tan | © - x 1-tanx sin (t—x) cos| X +x
4 2
3n 3n
9. cos 7+x cos (2n+ x) | cot 7—x +cot 2n+x) =1
10. sin(n+ 1)xsin(n+ 2)x + cos (n + 1)x cos (n + 2)x = coS X
11. cos(%+xj—cos 3 _x] = —V2sinx
4 4
12. sin?6x—sin?4x =sin 2x sin 10x 13. cos? 2x — cos? 6x = sin 4x sin 8x
14, sin2Xx+2sin4x+sin 6x =4 cos? X sin 4x
15. cot 4x (sin 5x + sin 3x) = cot X (sin 5x —sin 3x)
C0S9X — COoS5X sin2x sinbx + sin3x
16. — - =- 17. ——— =tan4x
sin17x — sin3x cos10x COS5X + C0S3X
snx—siny X—y sin X+ sin3x
18— =tan—— 19, ——— = tan2x
COSX + COSY 2 COSX + C0S3X
sinx —sin3x . C0S4X + COS3X + COS2X
20. —5——— = 2s8inX 21. = cot 3x

sin® x — cos® X Sin4x + sin3x + sin2x
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22.

23.

25.
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cot X cot 2x — cot 2x cot 3x —cot 3x cot x = 1

Atan X (1-tan®x)

> 5 24, cos4dx =1—8sin® X cos X
1-6tan“x+tan"x

tan 4x =

COS 6X = 32 cos® x —48cos* x + 18 cos® x — 1

3.5 Trigonometric Equations

Equations involving trigonometric functions of a variable are called trigonometric
equations. In this Section, we shall find the solutions of such equations. We have
already learnt that the values of sinx and cosx repeat after an interval of 2r and the
values of tanx repeat after an interval of . The solutions of atrigonometric equation
for whichO< x< 2w arecalled principal solutions. The expression involving integer
‘n” which givesall solutions of atrigonometric equation iscalled the general solution.
We shall use‘Z’ to denote the set of integers.

Thefollowing exampleswill be helpful in solving trigonometric equations:
V3

Example 18 Find the principal solutions of the equation sinx = >

3

) . 2T . i . T 3
Solution  We know that, ssmgz7 and sn—zsn(n——stn—z—_

Therefore, principal solutions are X=% and ER

3
2n

Example 19 Find the principal solutions of the equation tanx = — ﬁ :

. 1
Solution We know that, tan% = i Thus, tan (n —%) = —tanE =——

J3 6 3
T T 1
tan| 2n—— |=—tan==——
e (” 6] E
5n 11n 1
Thus tan—=tan—=-—.
6 6 J3
o . 5n 11n
Therefore, principal solutions are 5 and 5

Wewill now find the general solutionsof trigonometric equations. We have aready
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seen that:

sinx =0 gives x=nm, wherene Z

cosx =0 gives x=(2n + 1)% ,wherene Z.
We shall now provethefollowing results:
Theorem 1 For any real numbers x and y,

snx=sinyimpliesx=nn + (-1)"y, wherene Z
Proof  If sinx=siny, then
X+y . X-Yy

snx—-siny=0 or 2cos sin > =0
L X+y . X—y
which gives cos =0 or sin 2 =0
X+Yy 7 X—Yy
Therefore 5 - 2n+ 1)5 or — - nn, wherene Z
i.e X=2n+1) n-y orx=2nm+y, whereneZ
Hence Xx=2n+ Dr + (-1)***yorx=2nt +(-1)*y, wheren e Z.

Combining these two results, we get
X=nm+ (-1)"y, wheren e Z.

Theorem 2 For any real numbers X and y, cos X = cos 'y, implies x= 2nwt £ v,
wherene Z

Proof If cosx = cosy, then

cosx—cosy=0 i.e, -=298n sin =0
y 2 2
X+ X —
Thus sin y =0 or sin y =0
2 2
X+y X—Yy
Therefore =nm or > =nr, wherene Z
i.e X=2nm—y orx=2nnt +y, wherene Z
Hence X=2ntty, wherene Z

Theorem 3 Provethat if x and y are not odd mulitple of g , then

tanx =tanyimpliesx=nn +y, wherene Z
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Proof If tanx=tany, then tanx—tany=0
sinx cosy—cosx siny

0
or COSX COSY
which gives sn(x-y)=0 (Why?)
Therefore X—y=nm,ie,x=nt+y wherene Z
, . . 3
Example 20 Find the solution of sinx :—7.
_ 3 . T v . An
Solution Wehavesinx =—— = —SnZ=3n n+_—|=8N—
2 3 3 3
. . 4n . )
Hence Sinx= Sln?,whlch gives

4
X= nn+(—1)”?n, wherene Z.

4 .
?n is one such value of x for which smx=—§. One may take any

3
other value of x for which sinx = — % . The solutions obtained will be the same

athough these may apparently look different.

Example 21 Solve cosx =

2
} 1 o
Solution We have, COSX = 5 = COS§

T
Therefore X=2nm i§ ,Wwherene Z.

Example 22 Solve tan 2x = —cot(x+%).

Solution We have, tan 2X=—COt(X+Ej = tan(g+ x+%)
3
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or tan2x = tan(x+%j
5n
Therefore 2X=nm+ x+€, where ne Z
5n
or X=nn+€,where neZ.

Example 23 Solvesin 2x—sind x + sin 6x = 0.

Solution The equation can be written as
Sin6x+sin2x—sn4x =0

or 2sin4xcos2x—sindx =0
i.e sindx(2cos2x-1) =0
1

Therefore sin4x=0 or cost:E

. T
ie sndx=0 or cost=cos§
Hence 4x=nmt or 2X=2nﬂ:i%,where neZ
. nm o
i.e x=7 or X =nn4_rg,wherenez.

Example 24 Solve2 cos?x +3sinx=0
Solution  The equation can be written as

2(1-sin® x)+3sinx = 0

or 2sin® x—3sinx-2=0
or (2sinx+1) (sinx—2) =0
. 1 .
Hence snx= _E or snx=2
But sinx = 2isnot possible (Why?)
) n
Therefore sinx= —— = Sin—

2 6
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Hence, the solutionisgiven by

7
X= nn+(—1)”g, wherene Z.

| EXERCI SE 3.4
Find the principal and general solutions of thefollowing equations:
1. tanx = \/5 2. secx=2
3. cotx=-4/3 4. COSEC X =-—2
Find the general solution for each of the following equations:
5. c0s4 x=cos2x 6. cos3x+ cosx—cos2x =0
7. sin2x+cosx=0 8. sec? 2x = 1-tan 2x

9. sSnx+sin3x+sinbx=0

Miscellaneous Examples

3 12
Example 25 Ifsinng, cosy=—1—3,wherexandybothlieinsecond quadrant,
find the value of sin (x +y).
Solution We know that
Sin(x+y) =sinxcosy + cosxsiny - (D
No cos? 1-sir? 1 0 1
W Xx=1- X=1——=—
N 25~ 25
4
Therefore cosxzig.
Since x liesin second quadrant, cosx is negative.
4
Hence COSX=——
5
N ity = 1 v=1 144 25
ny=1-— =]1-—=—
ow Sy = 27008 =2~ 169 ~ 160
. .5
. ny=+—.
i siny 13

5
Sincey liesin second quadrant, hencesinyispositive. Therefore, siny = e} Substituting

thevalues of sinx, siny, cosx and cosy in (1), we get
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5

3 12
sin(x+ y):—x(— j - = _
5 13 65 65 65

12 +(_4) 5 3% 20 56
13

Example 26 Prove that
X Ox . . Bx
C0S 2X cosE— Cos 3X cos7 =sin5xsn 7 )

Solution  We have

L.H.S = % {Zcos 2X cosg - 20059—2X cos 3x}

= 1 cos( 2X+ fj + cos(Zx - fj - cos(% + 3xj - cos(% - 3xj
2 2 2 2 2

1]  5x 3x 15x 3x| 1] 5x 15X |
= —LCOS— + COS— —COS— —COS— | = —L COS— — COS—J
2 2 2 2 2172 2 2

2 2 2 2
2 2

sin

. . 5X . . 5X
= —sinbx sn(—?j = 9nb5x Sm? =R.H.S.

T
Example 27 Find the value of tan rE

_ T T
Solution Let X=§.Then ZXZZ'

2tan x
Now tan2x = ————
1-tan® X

- 2tan ~

o tan——=-————j%;
4 1 tan?®

2y

T
L =tan 5. Thenl=
ety tan8 en 1y
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or y¥+2y—1=0
—2+242
Therefore y= T\/_ = _1+4/2
Since z liesinthefirst quadrant, y = tan z is positve. Hence

8 8

tang =-J2-1.

3 3 . X X X
Example 28 If tan X=Z,n<X<7,fmdthevalueofsmz, cosz andtanz.

3n
Solution Since m< X<7, COSX is negative.
Al <X<
0 —<Z<—.
2 2

X X
Therefore, sin 3 is positive and cos 3 IS negative.

No sec’x =1 +tan’x = 1+ o _ 2
W = = —_— = —
16 16
16 4
Therefore cos’x=— orcosx=——= (Why?)
25 5
., X 4 9
Now 29iN“—==1-cosx =1+—=—.
2 5 5
Therefor 'nZE _ﬂ
erefore Si > =10
o x_ 3 Why?
or sm2- J10 (Why?)
_ X 1 4 B 1
Agan 2cos? I 1+ cosx= 5 &5
X 1
Therefore cos> — = —

2 10
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X 1 Why?
or cos 5= T (Why?)
in” (_Ji5)
sin—
X 3 —4/10
Hence tan— = —2 = xL J=—3.
27 X V1ol 1

Example 29  Prove that cos?x + cosz(x+%j+cosz(x—%j = g

Solution  We have

1+ cos 2x+ﬁ 1+ cos ZX—E
1+cost+ 3), 3) .

2 2 2

L.H.S.

= 1 3+ Cos 2X+ cos 2x+ﬁj+cos(2x—ﬁj
2| 3 3

= % 3+ C0S 2X + 2c0S 2X cosz—:ﬂ

= % 3+ C0S 2X + 2C0S 2X cos(n —%H

3+ COS2X— 2C0S 2X COS %}

= 2[3+cost—cost]=g =RH.S

I, N

Miscellaneous Exercise on Chapter 3

Prove that:

T On 3n 5n
1. 2C0S— COS— +Cc0S— + cos—=0
13 13 13

2. (Sn3x+sinx)sinx+ (cos3x—cosx) cosx=0
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) ) X+Yy
(cosx + cosy)? + (sin X —sin y)? = 4 cos? N
X-y

2
Sin X+ SN 3X+ sin 5x + Sin 7X = 4 €cOS X €COS 2X Sin 4x

(cosx—cosy)? + (Snx—siny)? = 4 sin?

(Sn7x+sn5x) + (SN9Xx+sin3x)

=tan 6x
(cos7x+ cos5X) + (Cos9X + cos3x)

. . . . X 3X
sin 3x + sin 2x—smx=4smxcosz cos;

X X X
Find sin Py cosz and tan 3 in each of thefollowing :

8.

10

4 1
_E’ X in quadrant Il 9. cosx = —5, xin quadrant 111

tanx

1
7 xin quadrant I

. sinx

Summary

¢ Ifinacircleof radiusr, an arc of length | subtendsand angle of 6 radians, then
l=r6

4 Radian measure = %OX Degree measure

180
@ Degree measure = TX Radian measure

®cos?x+simx=1

¢ 1+ tan?x = sec?x

¢ 1+ cot?x = cosec?x
@ Cos (2nm + X) = coS X
& sn(2nt +x) =sin X
®sn(—x)=-sinXx

@ COS (— X) = cos X



TRIGONOMETRIC FUNCTIONS 83
@ Cos(Xx+y)=cosxcosy—sinxsiny
9 COS(X—Y)=cCcosXxcosy+ sinxsiny

T
OCOS(E—X) = sinx

T
¢ sin (E_X) = COS X

#sSin(x+y)=sinxcosy+cosxsiny
#sSin(x—y)=sinxcosy—cosxsiny

T T
QCOS(EJfX):—sinx sin (E”ij:cosx
Cos (T —X) = —COS X sn(n —X) =sinXx
cos (m +X) =—CoSX sn(t +Xx) =—sinx
COS (2m —X) = COS X sn (2r —x) =—s8inx

¢ If none of the angles x, y and (x + Y) is an odd multiple of z , then

2
tanx+tany
ten (x+y) = 1-tanxtany
tanx—tany
’tan(x_y)‘1+tanxtany

¢ If none of the angles x, y and (x + y) isamultiple of &, then

cot xcot y—1

Cot (X +Y) = "oty + cot x

cotxcot y +1
@ COt(X—Y) = "oot v —cotx

1—tan®x

= —Sin?x = — 1= — N2 S—p
@ COS 2X = COS’X —SiN?X = 2c08°X—1=1-2sn?x 1+ tan’x
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2tan X

@ Sin2x=2siNnX coSX =———
1+ tan®x

2tanx
1-tan®x

¢ tan2x =

¢ SN3x=3sinX —4sin®X
@ cos 3x = 4cos®X — 3cosX

3tan x—tan® x

$1aN3X = P X

. X+Yy X=-Yy
¢ () cosx+cosy=2c0s — = COS—=

. Xty . XY
(i) cosx—cosy=-—2sin TsmT

L . . Xty X=y
(iii) S|nx+smy=231nTCOS >

i _ _ X+y . X-y
(iv) sinx—siny = 2cos Tsm N

& (i) 2cosxcosy=cos (x+Yy)+ cos(X—Y)
(i) —2sinxsiny=cos (X +Yy) —cos (X—Y)
(i) 2sinxcosy=s8n(x+y)+sn(x-y)
(iv) 2cosxsiny=sin(x+y)—sn(XxX-y).

& sinx =0givesx=nm, wherene Z.

#cosx =0givesx=(2n+ 1) g,wherene Z.

& snx=sinyimpliesx=nn + (—1)"y, wherene Z.
@ Ccos X = cosy, impliesx=2nt +y, wherene Z.

¢ tan x =tanyimpliesx=nr +y, wherene Z.
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Historical Note

The study of trigonometry was first started in India. The ancient Indian
Mathematicians, Aryabhatta (476A.D.), Brahmagupta (598 A.D.), Bhaskara |
(600A.D.) and Bhaskarall (1114 A.D.) got important results. All thisknowledge
first went from Indiato middle-east and from there to Europe. The Greeks had
also started the study of trigonometry but their approach was so clumsy that
when the I ndian approach became known, it wasimmediately adopted throughout
theworld.

In India, the predecessor of the modern trigonometric functions, known as
the sine of an angle, and theintroduction of the sinefunction representsthe main
contribution of the siddhantas (Sanskrit astronomical works) to the history of
mathematics.

Bhaskara | (about 600 A.D.) gave formulae to find the values of sine
functions for angles more than 90°. A sixteenth century Malayalam work
Yuktibhasa (period) contains a proof for the expansion of sin (A + B). Exact
expressin for sines or cosines of 18°, 36°, 54°, 72°, etc., are given by
Bhaskara Il.

The symbols sin? x, cos™ x, etc., for arc sin X, arc cos x, etc., were
suggested by the astronomer Sir John F.W. Hersehel (1813 A.D.) The names of
Thales(about 600 B.C.) isinvariably associated with height and distance problems.
Heiscredited with the determination of the height of agreat pyramidin Egypt by
measuring shadows of the pyramid and an auxiliary staff (or gnomon) of known
height, and comparing theratios:

H_h t n's altitude
_——=— = |
S an (sun’s altitude)

Thalesis also said to have calculated the distance of a ship at sea through
the proportionality of sidesof similar triangles. Problems on height and distance
using the similarity property are al'so found in ancient I ndian works.

/
— 0 —
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Chapter [

PRINCIPLE OF
MATHEMATICAL INDUCTION

«*Analysis and natural philosopy owe their most important discoveries to
this fruitful means, which is called induction. Newton was indebted
to it for his theorem of the binomial and the principle of
universal gravity. — LAPLACE <*

4.1 Introduction

One key basis for mathematical thinking is deductive
reasoning. Aninformal, and exampl e of deductive reasoning,
borrowed from the study of logic, isan argument expressed
in three statements:

(@) Socratesisaman.

(b)  All men are mortal, therefore,

(c) Socratesismortal.

If statements (@) and (b) are true, then the truth of (c) is
established. To make this simple mathematical example,
we could write:

(i) Eightisdivisibleby two.

(i)  Any number divisibleby twoisan even number,

therefore,

(i)  Eight isan even number.

Thus, deduction in a nutshell is given a statement to be proven, often called a
conjecture or a theorem in mathematics, valid deductive steps are derived and a
proof may or may not be established, i.e., deduction is the application of a general
case to a particular case.

In contrast to deduction, inductive reasoning depends on working with each case,
and developing a conjecture by observing incidencestill we have observed each and
every case. It is frequently used in mathematics and is a key aspect of scientific
reasoning, where collecting and analysing dataisthe norm. Thus, in simplelanguage,
we can say the word induction meansthe generalisation from particular cases or facts.

G. Peano
(1858-1932)
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In algebra or in other discipline of mathematics, there are certain results or
statements that are formulated in terms of n, where n is a positive integer. To prove
such statements the well-suited principle that is used—based on the specific technique,
is known as the principle of mathematical induction.

4.2 Motivation

In mathematics, we use aform of complete induction called mathematical induction.
To understand the basic principles of mathematical induction, suppose a set of thin
rectangular tiles are placed on one end, as shown in Fig 4.1.

4

Fig4.1

Whenthefirst tileis pushed in theindicated direction, all thetileswill fall. To be
absolutely surethat all thetileswill fall, it issufficient to know that

(@) Thefirsttilefalls, and

(b) Intheevent that any tile fallsits successor necessarily falls.

Thisisthe underlying principle of mathematical induction.

We know, the set of natural numbers N is a special ordered subset of the real
numbers. Infact, N isthe smallest subset of R with the following property:

A set Sissaidto beaninductive setif 1€ Sand x+ 1€ Swhenever xe S. Since
N isthe smallest subset of R whichisan inductive set, it follows that any subset of R
that is an inductive set must contain N.

[lustration

Supposewewish to find theformulafor the sum of positiveintegersi, 2, 3,...,n, that is,
aformulawhich will givethevalueof 1 + 2+ 3whenn =3, thevaluel+ 2+ 3+ 4,
when n = 4 and so on and suppose that in some manner we are led to believe that the

n(n+1)

formulal+ 2+ 3+..+n= is the correct one.

How can thisformulaactually be proved?We can, of course, verify the statement
for as many positive integral values of naswelike, but this process will not prove the
formulafor all values of n. What is needed is some kind of chain reaction which will
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have the effect that once the formula is proved for a particular positive integer the
formulawill automatically follow for the next positiveinteger and the next indefinitely.
Such areaction may be considered as produced by the method of mathematical induction.

4.3 ThePrincipleof Mathematical I nduction
Suppose there is a given statement P(n) involving the natural number n such that

(i) The statement is true for n = 1, i.e,, P(1) is true, and

(if) If the statement is true for n = k (where k is some positive integer), then
the statement is also true for n = k + 1, i.e, truth of P(k) implies the
truth of P (k + 1).

Then, P(n) is true for all natural numbers n.

Property (i) is simply a statement of fact. There may be situations when a
statement is true for all n > 4. In this case, step 1 will start from n = 4 and we shall
verify theresult for n = 4, i.e., P(4).

Property (ii) isaconditional property. It does not assert that the given statement
istruefor n=k, but only that if it istruefor n =k, thenitisalso truefor n=k +1. So,
to provethat the property holds, only provethat conditional proposition:

If the statement istrue for n =k, then it isalso truefor n =k + 1.

Thisissometimesreferred to astheinductive step. The assumption that the given
statement is true for n = k in this inductive step is called the inductive hypothesis.

For example, frequently in mathematics, aformulawill be discovered that appears

tofit apatternlike
1=12=1
4=22=1+3
9=3F=1+3+5
16=4°=1+3+5+7,etc.

It is worth to be noted that the sum of the first two odd natural numbers is the
square of second natural number, sum of the first three odd natural numbers is the
square of third natural number and so on.Thus, from this pattern it appears that

1+3+5+7+..+(2n-1)=r?,i.g
the sum of the first n odd natural numbers is the square of n.

Let uswrite

Pn:1+3+5+7+..+(2n-1) =n?%

We wish to prove that P(n) is true for all n.

Thefirst step in aproof that uses mathematical induction isto prove that
P (1) istrue. Thisstep is called the basic step. Obviously
1=1%i.e, P(1)istrue.
The next step is called the inductive step. Here, we suppose that P (K) istrue for some
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positive integer k and we need to prove that P (k + 1) istrue. Since P (K) is true, we
have

1+3+5+7+..+(2k-1) =k )

Consider
1+3+5+7+ ...+ (2k-1)+{2(k+1) -1} .. (2
=ke+ (2k+ 1) =(k+ 1)y [Using (2)]

Therefore, P (k + 1) is true and the inductive proof is now completed.
Hence P(n) is true for al natural numbers n.

Example 1 For al n > 1, prove that
n(n+1)(2n+1)

5 :
Solution Let the given statement be P(n), i.e.,
n(n+1)(2n+1

6

1(1+1)(2x1+1)  1x2x3
6 6
Assume that P(K) is true for some positive integersk, i.e.,

1
12+ 22+32+42+“.+ k2 :% (1)

We shall now prove that P(k + 1) is also true. Now, we have
(12 +22 +37 +4 +...+k )+ (k+1)?
_ k(k+D(2k+1)
6

_ k(k+D(2k +D)+6(k+12)°
- 6

(k +1) (2k* + 7k +6)
6

_ (k+D)(k+1+D{2(k+1)+ T
- 6
Thus P(k + 1) is true, whenever P (K) is true.
Hence, from the principle of mathematical induction, the statement P(n) is true
for all natural numbers N.

P+ 22+ F+ L+ +1n° =

P(n) : 1°+ 22+ 3F+42+..+n* =

Forn=1, P():1= =1 whichistrue.

+(k+1)2 [Using (1)]
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Example 2 Prove that 2"> n for all positive integers n.
Solution Let P(n): 2">n
When n =1, 2'>1. Hence P(1) is true.
Assume that P(K) is true for any positive integersk, i.e.,

2>k - Q)
We shall now prove that P(k +1) is true whenever P(K) is true.
Multiplying both sides of (1) by 2, we get

2.2¢>2k

e, 2K1>2k=k+k>k+1

Therefore, P(k + 1) is true when P(K) is true. Hence, by principle of mathematical
induction, P(n) istrue for every positive integer n.

Example 3 For al n > 1, prove that
1 1 1 1 n

bttt =
12 23 34 n(n+l) n+1°

Solution We can write
1 1 1 1 n

S — L+ =
P): 12723734 " nn+) n+1

1 1 1 o .
We note that P(1): —=—==——, which istrue. Thus, P(n) istrueforn = 1.

12 2 1+1
Assume that P(K) is true for some natural numbers k,
1 1 1 1 k
i.e., E+?3+ﬂ+'"+k(k+1):k_+1 )
We need to prove that P(k + 1) is true whenever P(K) is true. We have
1 1 1 1 1

—+—+— ..+ +
12 23 34 k(k+1) (k+1) (k+2)

1 1 1 1 1
— ettt ...+ +
L.z 23 34 k(k+1)} (k+1) (k+2)

k 1 ,
=k+1 (k+D(k+2) [Using (1)]
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_ kk+2)+1  (K*+2k+D)  (k+1)° k+l_ k+1
S (k+)(k+2)  (k+D(k+2)  (k+1)(k+2) k+2 (k+1)+1

Thus P(k + 1) is true whenever P(K) is true. Hence, by the principle of mathematical
induction, P(n) istruefor all natural numbers.

Example 4 For every positive integer n, provethat 7" — 3" isdivisible by 4.
Solution We can write
P(n): 7"—3isdivisible by 4.
We note that
P(1): 7t - 3' =4 whichisdivisileby 4. Thus P(n) istruefor n=1
Let P(k) be true for some natural number k,
i.e, P(k) : 7*— 3% isdivisible by 4.
We can write 7 — 3 = 4d, where d € N.
Now, we wish to prove that P(k + 1) is true whenever P(K) is true.
NOW 7(k+ 1) __ 3(k+ 1) = 7(k +1) _ 73k + 73k _ 3(k +1)
=7(7*=3)+ (7-3)3 =7(4d) + (7 - 3)3
=7(4d) + 4.3< = 4(7d + 3
From the last line, we see that 7 *9 — 3k *D jsdivisible by 4. Thus, P(k + 1) istrue

when P(k) istrue. Therefore, by princlple of mathematical induction the statement is
true for every positive integer n.

Example 5 Prove that (1 + x)" > (1 + nx), for all natural number n, where x > — 1.
Solution Let P(n) be the given statement,
i.e, P(n): (L+x)">(1+nx), forx>-1.
We note that P(n) istruewhenn =1, since ( 1+x) > (1 + x) for x > -1
Assume that

PK): (1 + X% > (1 +kx),x>—1istrue - ()
We want to prove that P(k + 1) is true for x > —1 whenever P(K) is true. - (2
Consider theidentity

QA+X)*1=(1+x+ (1 +x)
Giventhat x>-1, s0 (1+x) > 0.

Therefore, by using (1 + X)* > (1 + kx), we have
@A+x) 1> 1+ k)1 +x)
i.e (1 +x)*1> (1+x+kx+ k). .. (3)
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Here k is a natural number and x> > 0 so that kx* > 0. Therefore
(1 +x+kx+ k) > (1+x+ kx),

and so we obtain
@ +x<t >(1+x+kx)
e (L+x<t > [1+Q+KkX

Thus, the statement in (2) is established. Hence, by the principle of mathematical
induction, P(n) istruefor all natural numbers.

Example 6 Prove that
27"+ 3.5"-5 isdivisibleby 24, forall ne N.

Solution Let the statement P(n) be defined as
P(n) : 27"+ 3.5"-5isdivisible by 24.
We note that P(n) istruefor n=1, since 2.7 + 3.5-5= 24, which isdivisible by 24.
Assume that P(K) is true
ie. 2.7<+35-5=24g,whenge N - (1)
Now, we wish to prove that P(k + 1) is true whenever P(K) is true.
We have
2.7t + 3561 5 =27« 7+ 35 5 -5
=7[27+35-5-35“+5]+35<.5-5
=7[24q-35+5] + 1555
=7x249—-21.5+35+155-5
=7 % 249—6.5+ 30
=7x%x24q-6 (5¢-5)
=7 % 249 —6 (4p) [(B*—5) isamultiple of 4 (why?)]
=7 x24q-24p
=24(719-p)
=24 % r;r=7q—p, issome natural number. .. (2

The expresion on the R.H.S. of (1) isdivisible by 24. Thus P(k + 1) is true whenever
P(K) is true.

Hence, by principle of mathematical induction, P(n) istruefor all ne N.
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Example 7 Prove that
n3
12+22+ ..+ >§,ne N
Solution Let P(n) be the given statement.

3
n
e, PnN):12+22+ . +n? >§, ne N

, _ 13
We note that P(n) is true for n = 1 since 1* > 3

Assume that P(K) is true

k3
i.e Pk :12+22+ ..+ Kk > 3 (1)

We shall now prove that P(k + 1) is true whenever P(K) is true.
Wehave 17 + 22 + 32 + ... + k¥ + (k + 1)?

= (12+22+...+ k2) + (k+1)2 > k—; + (k+l)2 [by (1)]

1
=5 [+ 3+ 6k+3

1 1
=z [(k+21)2*+3k+2]> 7 (k+1)3

3 3
Therefore, P(k + 1) isalso truewhenever P(K) istrue. Hence, by mathematical induction
P(n) istruefor al ne N.

Example 8 Prove the rule of exponents (ab)" = a"b"
by using principle of mathematical induction for every natural number.

Solution Let P(n) be the given statement
i.e.  P(n) : (ab)" = ab".
We note that P(n) is true for n = 1 since (ab)*= a'b".
Let P(k) be true, i.e.,
(ab)x = abk . (1)
We shall now prove that P(k + 1) is true whenever P(K) is true.
Now, we have

(ab)<* = (ab)* (ab)
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= (a“ b") (ab) [by ()]
=(a.a") (b*.b"H) =a. b

Therefore, P(k + 1) is also true whenever P(K) is true. Hence, by principle of
mathematical induction, P(n) istruefor al ne N.

| EXERCISE 4.1 |

Provethefollowing by using the principle of mathematical inductionfor al ne N:

n
1. 1+3+3F+ .. +33 1= %
n(n+1)j2

2. 13+23+33+...+n3=( 5

1 1 1 2n
1+ + +..+ =
1+2) @+2+3 @+2+3+..n) (n+1"

n(n+1)(n+2)(n+3)

4. 123+ 234+...+n(ntl) (n+2) = 2

(2n-13"" +3
—

n(n+1)(n+2)}

5 13+23+33+...+ n3=

6. 1.2+23+34+...+ n(ntl) = { 3

n(4n® + 6n-1)

7. 1.3+35+57+...+(2n-1) (2n+1) = 3

8. 12+22°+32°+ .+n2"=(n-1) 2"+ + 2.

1 1 1 1 1
9 —+—+—=+ —=1-—
2 4 8 2" 2"
1 1 1 1 n
10, =——=+—+ +..+ = _
25 58 811 ~ (3n-1)(3n+2) (6n+4)
1 1 1 1 n(n+3)
11. + + +...+ = )
123 234 345 n(n+1)(n+2) 4(n+1)(n+2)



12.

13.

14.

15.

16.

17.

18.

19.
20.
21.

22.
23.
24,
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a(r"-1
r-1 -~

(l+ §j (1+ Ej (l+ Z] ...(l+ (anl)] =(n+1)?
1 4 9 n
(1+}j (1+ ij (l+ 1] (l+1] =(n+1) .
1 2 3 n

n(2n-1)(2n+1)
3 :

1 1 1 1 n
—+——+ .t =
14 47 7.10 (Bn-2)((3n+1) (3n+1)"

a+ar+ar’+...+amt=

P+3F +5 + ..+ (2n-1)% =

1 1 1 1 n

et =
35 57 79 (2n+1(2n+3) 3(2n+3) "

1
1+2+3+..+n< §(2n+1)2.

n(n+1) (n+5)isamultiple of 3.
10*-*+ lisdivisible by 11.
xen—yisdivisibleby x +y.

32 —-8n—-9isdivisible by 8.
41"— 14" isamultiple of 27.
2n+7)<(n+ 3>

Summary

@ Onekey basisfor mathematical thinking isdeductive reasoning. In contrast to
deduction, inductive reasoning depends on working with different cases and
developing a conjective by observing incidences till we have observed each
and every case. Thus, in simple language we can say the word ‘induction’
means the generalisation from particular cases or facts.

@ The principle of mathematical induction isone such tool which can be used to

prove a wide variety of mathematical statements. Each such statement is
assumed as P(n) associated with positive integer n, for which the correctness
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for the case n = 1 is examined. Then assuming the truth of P(k) for some
positive integer k, the truth of P (k+1) is established.

Historical Note

Unlike other concepts and methods, proof by mathematical inductionisnot
theinvention of aparticular individua at afixed moment. It issaid that the principle
of mathematical induction was known by the Phythagoreans.

The French mathematician Blaise Pascal is credited with the origin of the
principle of mathematical induction.

The name induction was used by the English mathematician John Wallis.

L ater the principlewas employed to provide aproof of the binomial theorem.

DeMorgan contributed many accomplishmentsin thefield of mathematics
on many different subjects. He was the first person to define and name
“mathematical induction” and developed De Morgan's rule to determine the
convergence of a mathematical series.

G. Peano undertook the task of deducing the properties of natural numbers
from a set of explicitly stated assumptions, now known as Peano’s axioms.The
principleof mathematical induction isarestatement of one of the Peano’saxioms.

/
— 0 —



Chapter 5

COMPLEX NUMBERS AND
QUADRATIC EQUATIONS

«*Mathematics is the Queen of Sciences and Arithmetic is the Queen of
Mathematics. — GAUSS ¢

5.1 Introduction

In earlier classes, we have studied linear equationsin one
and two variablesand quadratic equationsin onevariable.
We have seen that the equation x? + 1 = 0 has no real
solution as x? + 1 = 0 gives X2 = — 1 and square of every
real number is non-negative. So, we need to extend the
real number system to a larger system so that we can
find the solution of the equation x?=—1. Infact, themain
objectiveisto solve the equation ax? + bx + ¢ = 0, where
D =b?- 4ac <0, which is not possible in the system of

real numbers.
W. R. Hamilton
5.2 Complex Numbers (1805-1865)

Let us denote ,/_1 by the symbol i. Then, we have i?=-1. Thismeansthat i isa
solution of the equation x> + 1 = 0.
A number of theform a + ib, where a and b are real numbers, is defined to be a

(-1
complex number. For example, 2+i3, (—1) + i\/3, 4+l(ﬂj are complex numbers.

For the complex number z=a +ib, aiscalled thereal part, denoted by Rezand
biscalled theimaginary part denoted by Im z of the complex number z. For example,
if z=2+i5,thenRez=2andImz=5.

Two complex numbersz =a+ibandz,= c+idareequa if a=candb=d.
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Example 11f 4x +i(3x—y) =3 +i (- 6), where x and y are real numbers, then find
thevaluesof x and y.

Solution We have

Ix+i(3x—y)=3+i(-H) - Q)
Equating the real and the imaginary parts of (1), we get

Ax=3,3x—y=—06,

3 3
which, on solving simultaneously, give X:Z and y=7.
5.3 Algebraof Complex Numbers
In this Section, we shall develop the algebra of complex numbers.

5.3.1 Addition of two complex numbers Letz =a+iband z, = ¢ + id be any two
complex numbers. Then, thesum z, + z, is defined as follows:

z, +z,=(a+c)+i(b+d), whichisagain acomplex number.
For example, (2+i3) + (-6 +i5) =(2—-6)+i (3+5) =—4+i8

The addition of complex numbers satisfy the following properties:

(i) The closure law The sum of two complex numbers is a complex
number, i.e., z, + z, is a complex number for all complex numbers
z, and z,

(i) The commutative law For any two complex numbers z, and z,
Z+2,=2+27

(i) The associative law For any three complex numbers z,, z,, z,,
(z+2)+z,=2+(z+2)

(iv) The existence of additive identity There exists the complex number
0 + i O (denoted as 0), called the additive identity or the zero complex
number, such that, for every complex number z, z+ 0=z

(v) The existence of additive inverse To every complex number
z=a+ ib, we have the complex number — a + i(— b) (denoted as — 2),
called the additive inverse or negative of z. We observe that z + (—2) = 0
(the additiveidentity).

5.3.2 Difference of two complex numbers Given any two complex numbers z, and
z, the difference z, — z, is defined as follows:

2-2,=2+(-2)
For example, 6+3)—(2-)=(06+3)+(—2+i)=4+4i
and 2-1N)-(6+3)=2-i)+(-6-3)=—4-4i
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5.3.3 Multiplication of two complex numbersLet z =a+ibandz, = c +id be any
two complex numbers. Then, the product z z, is defined as follows:
z,z,= (ac— bd) + i(ad + bc)
For example, (3+1i5) (2+i6)=(3x2-5%x6)+i(3x6+5%x2)=—24+i28
The multiplication of complex numbers possessesthefollowing properties, which
we state without proofs.
(i) Theclosurelaw Theproduct of two complex numbersisacomplex number,
the product z, z, is a complex number for al complex numbers z, and z,.
(i) The commutative law For any two complex numbers z, and z,
22,=22
(i) The associative law For any three complex numbers z, z